
REVIEWS

One goal of genome projects is to systematically
identify genes1. In the past year, two papers have
announced drafts of the human genome sequence2,3,
but the estimated number of human genes continues
to fluctuate. Current estimates centre on
30,000–40,000 genes, with occasional excursions to
100,000 or more4–6. One reason for the continuing
ambiguity is that genes are neither well defined nor
easily recognizable. The numerology is based on
three methods: cDNA cloning and expressed
sequence tag (EST) sequencing of polyadenylated
mRNAs7,8; identification of conserved coding exons
by comparative genome analysis9; and computational
gene prediction2,3. These methods work best for large,
highly expressed, evolutionarily conserved protein-
coding genes, and they almost certainly underesti-
mate the number of other genes. They essentially do
not work at all for one class of genes — the non-cod-
ing RNA (ncRNA) genes, which produce transcripts
that function directly as structural, catalytic or regu-
latory RNAs, rather than expressing mRNAs that
encode proteins10–12 (see BOX 1 for a list of abbrevia-
tions that are used to describe classes of RNA).
Knowledge of ncRNAs has been limited to biochemi-
cally abundant species and anecdotal discoveries.
Even after the completion of many genome
sequences, both the number and diversity of ncRNA
genes remain largely unknown.

Could it be possible that a large class of genes has

gone relatively undetected because they do not make
proteins? How many ncRNA genes are there? How
important are they? What functions does a cell delegate
to RNA instead of protein, and why?

To address these questions, new systematic gene-
discovery approaches need to be developed that are
specifically aimed at ncRNAs. A pioneering study by
Roy Parker’s group found a few new RNA genes and
small open reading frames (ORFs) in the yeast genome
by doing northern blots that probed for expressed tran-
scripts in ‘grey holes’ (suspiciously large intergenic
regions), and by searching for consensus RNA poly-
merase III promoters13. Recently, several groups have
carried out systematic ncRNA gene-identification
screens along three main lines: cDNA cloning and
sequencing tailored to find new small non-mRNAs14;
specially designed cDNA cloning screens for a new reg-
ulatory RNA gene family of tiny RNAs called
microRNAs (miRNAs)15–17; and general ncRNA gene-
finding exercises using computational comparative
genomics in Escherichia coli18–20. The results of these
screens are startling. All of them indicate that the preva-
lence of ncRNA genes has indeed been underestimated.

The idea that a class of genes might have remained
essentially undetected is provocative, if not heretical. It is
perhaps worth beginning with some historical context
of how ncRNAs have so far been discovered. Gene dis-
covery has been biased towards mRNAs and proteins
for a long time.

NON-CODING RNA GENES AND 
THE MODERN RNA WORLD
Sean R. Eddy

Non-coding RNA (ncRNA) genes produce functional RNA molecules rather than encoding
proteins. However, almost all means of gene identification assume that genes encode proteins,
so even in the era of complete genome sequences, ncRNA genes have been effectively
invisible. Recently, several different systematic screens have identified a surprisingly large
number of new ncRNA genes. Non-coding RNAs seem to be particularly abundant in roles
that require highly specific nucleic acid recognition without complex catalysis, such as in
directing post-transcriptional regulation of gene expression or in guiding RNA modifications.
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RNA therefore changed from being thought of as
having one ‘flavour’ (the purely information-carrying
intermediate in the “central dogma”) to having three
flavours, all apparently involved in making protein:
rRNA, tRNA, and everything else, which was
assumed to be mRNA. Genetics and enzyme bio-
chemistry had already shown links between mutant
genes, missing enzymatic activities and missing or
altered proteins. The central intellectual problem was
to solve the genetic code. The non-rRNA/non-tRNA
fraction was complex, non-abundant and mostly
unstable, and there was little motivation or ability to
go any further and ask whether it contained more
than mRNA.

RNA comes in more than three flavours. Several abun-
dant, small non-mRNAs, other than rRNA and tRNA,
were detected and isolated biochemically, among them
the uridine (U)-rich U RNAS32,33. Many of these small
RNAs are associated with proteins to form ribonucleo-
protein (RNP) complexes34. Characterization of small
RNPs was aided by the discovery that certain patients
with autoimmune diseases, such as systemic lupus 
erythematosus, produce anti-RNP autoantibodies that
could be used to immunoprecipitate small RNPs35.
Many of the abundant small RNPs precipitated by
these antisera, namely U1, U2, U4, U5 and U6 small
nuclear RNA (snRNA), turned out to be components
of the spliceosome, involved in splicing mRNAs34,36.
Other U RNAs — U4atac, U6atac, U11 and U12 —
have been found to be components of a second
spliceosome species37,38.

Many other small RNAs have been isolated bio-
chemically. Sometimes these isolations have been delib-
erate, such as the isolation of numerous, small nucleo-
lar RNAs (snoRNAs) from NUCLEOLI39. In other cases,
biochemical fractions were unexpectedly found to con-
tain essential RNAs, as in the case of RIBONUCLEASE P40.
One of the best examples of such a surprise resulted in
the renaming of the signal recognition ‘protein’ to the
SIGNAL RECOGNITION ‘PARTICLE’ (SRP), when it was unex-
pectedly found to contain a 7S RNA that is now called
SRP-RNA41,42.

New RNAs continue to appear; among the more
fascinating stories is the discovery that RNAs have
roles in chromatin structure43. A canonical example is
the human XIST (X(inactive)-specific transcript)
RNA, a 17-kb ncRNA with a key role in dosage com-
pensation and X-chromosome inactivation44.
Drosophila melanogaster also seems to control dosage
compensation using small chromatin-associated roX
(RNA on the X) RNAs45. Several large ncRNAs have
been found to be expressed from imprinted regions of
vertebrate chromosomes, including the IPW
(imprinted in Prader–Willi syndrome) and H19
(H19, imprinted maternally expressed untranslated
mRNA) transcripts46,47. (The imprinted Prader–Willi
crucial region seems to be especially rich in
ncRNAs48,49, although it is unclear whether this is
peculiar, or simply due to the incredibly intense gene
hunting in search of the elusive cause of

The lessons of history
The central role of RNA in translation. It was clear by
the 1950s that although DNA was located in the eukary-
otic nucleus, proteins were being synthesized in the
cytoplasm in the presence of abundant RNA21,22. Most
of this cellular RNA could be found in discrete particles
in the cytoplasm23, which were later shown to be the site
of protein synthesis and called ribosomes24. James
Watson sketched the “central dogma” as early as 1952
(REFS 25,26), imagining that there must be a coding RNA
that is passed from the DNA to the protein synthetic
machinery in the cytoplasm. The prevailing theory was
the now-forgotten “one gene, one ribosome, one pro-
tein” hypothesis24,27 that each gene produced a special-
ized ribosome composed of a specific mRNA that was
associated with general ribosomal proteins that cata-
lysed translation. Various results undermined this
hypothesis, including the simple observation that
although genes came in a great variety of sizes and base
compositions, ribosomal RNAs had no variety27. Finally,
ribosomes were found to be general-purpose RNA/pro-
tein machines, composed largely of stable rRNAs28, and
programmed with various unstable mRNAs that are
only a small fraction of the total RNA population27,29.

The second class of functional RNA was predicted by
Francis Crick’s “adaptor” hypothesis24. Crick predicted
the existence of a molecule that mediates between the
triplet genetic code and the encoded amino acid.
Interestingly, Crick argued not only that the adaptor
would be an RNA, but also that RNA would be evolu-
tionarily preferred over protein as the material for his
adaptors, because base pairing made RNA uniquely suit-
ed for a role as a small, specific RNA recognition mole-
cule24. Crick’s adaptors had in fact just been biochemical-
ly observed by Mahlon Hoagland and co-workers30.
These RNAs later proved to be Crick’s adaptors — the
transfer RNAs31.

U RNA

Small nuclear RNA in
eukaryotes. The first such RNAs
to be found were rich in uridine
(U), and the name stuck.

NUCLEOLUS 

A highly organized nuclear
organelle that is the site of
ribosomal RNA processing and
ribosome assembly.

RIBONUCLEASE P 

A universally conserved enzyme
that cleaves a leader sequence
from tRNA precursors.

SIGNAL RECOGNITION

PARTICLE

An RNA–protein complex
involved in exporting secreted
proteins from the cell.

Box 1 | Abbreviations for different classes of non-coding RNA

• fRNA
Functional RNA — essentially synonymous with non-coding RNA104

• miRNA
MicroRNA — putative translational regulatory gene family

• ncRNA
Non-coding RNA — all RNAs other than mRNA13

• rRNA
Ribosomal RNA

• siRNA
Small interfering RNA — active molecules in RNA interference

• snRNA
Small nuclear RNA — includes spliceosomal RNAs

• snmRNA
Small non-mRNA — essentially synonymous with small ncRNAs14

• snoRNA 
Small nucleolar RNA — most known snoRNAs are involved in rRNA modification

• stRNA
Small temporal RNA — for example, lin-4 and let-7 in Caenorhabditis elegans

• tRNA
Transfer RNA
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For many eukaryotes, the approximate number of
specific 2′-O-ribose methylations and pseudouridyla-
tions is known, and for some species, many modified
positions have been precisely mapped64–66. In human
rRNAs, for instance, there are ~100 –110 of each type of
modification, and in yeast, about 50 of each. If
snoRNAs direct most (or all) eukaryotic nuclear rRNA
2′-O-ribose methylations and pseudouridylations,
there must be a large number of undiscovered
snoRNAs. Indeed, computational screens have revealed
41 new C/D snoRNAs in the yeast genome67 and more
than 60 new C/D snoRNAs in the Arabidopsis thaliana
genome68,69. Immunoprecipitation with antibodies
against fibrillarin (the putative methyltransferase)
revealed 17 new C/D snoRNAs in Trypanosoma 
brucei 70, and cDNA sequencing has found 72 new C/D
snoRNAs and 41 new H/ACA snoRNAs in the mouse
(see below)14. Numerous homologues of the C/D
snoRNAs have been found in the Archaea71,72, in which
they are presumed to have the same function in guiding
specific 2′-O-ribose methylations of target RNAs.

In addition to rRNA, other structural RNAs —
such as tRNAs and snRNAs — are known to be
extensively modified33,73,74, and it now seems that
some, if not many, of these modifications are also
guided by snoRNA. At least one of the 2′-O-ribose
methylations of Xenopus laevis U6 snRNA is guided
by the C/D snoRNA, mgU6-77 (REF. 73). Human U85
is a chimeric C/D, H/ACA snoRNA (a ‘Siamese’
snoRNA) that guides both a methylation and a
pseudouridylation of U5 snRNA75. Furthermore,
sequencing of snoRNA-enriched cDNA libraries has
revealed several ‘orphan’ snoRNAs with no obvious
rRNA target49,76,77, as have the computational screens
for archaeal snoRNAs71, for which a few such cases
have been putatively assigned to known tRNA 2′-O-
ribose methylations. One puzzling aspect of these
discoveries is that one has to wonder how non-rRNAs
are transported through the nucleolus, or whether
perhaps there is at least one more site of RNA modifi-
cation in the cell. Recent evidence indicates that the
snRNA modifications are associated with CAJAL BODIES

(coiled bodies) in the nucleus78.

An EST screen for small non-mRNAs. Alexander
Hüttenhofer and colleagues14 undertook a general
screen for new, small non-mRNAs, using an EST
sequencing approach. The RNA population used was
total (not cytoplasmic) mouse brain RNA that was
cloned by RNA TAILING (not by poly-A selection and dT
priming) and size selected in two small RNA frac-
tions — 50–100 nucleotides and 110–500
nucleotides. High-throughput filter hybridization
was used to screen out clones that correspond to
tRNA, rRNA fragments and other known ncRNAs,
increasing the fraction of new ncRNA sequences
from ~3–7% in an unscreened library to ~20–22%
after screening. A total of ~5,000 clones were
sequenced, and after accounting for several sequences
of the same RNA species, 201 new RNA sequences
were identified.

Prader–Willi.) Many of these other RNAs are cis-anti-
sense RNAs that overlap coding genes on the other
genomic strand. Various cis-antisense RNAs have been
observed in prokaryotes50, plants51 and animals12, and
their roles are unlikely to be limited to those in
imprinting and chromatin structure. Mutations in 
one cis-antisense RNA in humans — SCA8 (spino-
cerebellar ataxia 8) — are found in patients with 
spinocerebellar ataxia52.

Continued flurries of small nucleolar RNAs
The nucleolus is rich in snoRNAs, most of which are
~70–250 nucleotides in length53,54. Some snoRNAs
have roles in ribosomal RNA PROCESSING, but most func-
tion in rRNA modification39. On the basis of weak
sequence similarities, almost all snoRNAs fall into two
families: the ‘C/D box’ snoRNAs and the ‘H/ACA’
snoRNAs39,55. The C/D box snoRNAs use base com-
plementarity to guide site-specific 2′-O-ribose methy-
lations to rRNA56–58, whereas the H/ACA snoRNAs
use base complementarity to guide site-specific
pseudouridylations to rRNA59,60 (FIG. 1). In both cases,
the catalytic function seems to be provided by a pro-
tein methylase or pseudo-U synthetase associated
with the snoRNA, and the specificity for the target
base on the rRNA is provided by base complementari-
ty to the snoRNA61–63.

RNA PROCESSING 

A general term for the
maturation of a precursor RNA;
includes the processes of RNA
splicing, RNA modification,
RNA editing and RNA cleavage.

CAJAL BODIES 

(also known as coiled bodies).
Nuclear organelles of unknown
function, named in honour of
Ramón y Cajal.

RNA TAILING

A technique in which an
artificial homopolymer
sequence is enzymatically
added to an RNA to facilitate
molecular cloning, as opposed
to relying on the presence of a
natural poly-A tail.
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Figure 1 | Diagrams of snoRNAs guiding modification to
target rRNA bases. a | C/D box small nucleolar RNAs
(snoRNAs) use antisense complementarity to target RNA for
2′-O-ribose methylation (site marked with ‘m’ and red dot). R
stands for A or G (purine). b | H/ACA box snoRNAs use
antisense complementarity in an interior loop to target RNA
for pseudouridylation (site marked ‘NΨ’). Redrawn with
permission from REF. 78.
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but with a tiny ncRNA. The lin-4 gene product is a 22-
nucleotide RNA, processed from a 61-nucleotide pre-
cursor RNA with a putative stem–loop structure.

Genetically, lin-4 acts as a negative regulator of hete-
rochronic protein-coding genes such as lin-14 and 
lin-28. The 3′ untranslated regions (UTRs) of the target
genes have short stretches of complementarity to lin-4
(REFS 82–84; FIG. 2). Deletion of these apparent lin-4 target
sequences causes an unregulated gain-of-function phe-
notype83,84. The lin-4 RNA inhibits accumulation of the
LIN-14 and LIN-28 proteins by an unknown mecha-
nism. The target mRNA remains stable, fully
polyadenylated and polysome associated85.

Two: let-7. The lin-4 gene remained an oddity until a
second heterochronic gene, lethal-7 (let-7), also mapped
to a ncRNA gene with a 21-nucleotide product86. The
small let-7 RNA is also thought to be a post-transcrip-
tional negative regulator, possibly targeting the protein-
coding mRNAs for lin-41 and lin-42, based on pheno-
typic analysis and plausible complementary sequences
in the 3′ UTR of these genes.

Surprisingly,Amy Pasquinelli et al.87 showed that let-7
was almost 100% conserved and expressed as a small 21-
nucleotide RNA in all bilaterally symmetrical animals
that were tested, including human, mouse, chicken, poly-
chaete worms and flies, but not in cnidarians (jellyfish)
or poriferans (sponges). The function of these let-7
homologues is unknown, but because they show tempo-
ral regulation that is generally similar to the develop-
mental pattern of let-7 in the worm, one presumes that
they also function in post-transcriptional regulation of
developmental genes. Pasquinelli et al. proposed the
name “small temporal RNAs” (stRNAs) for genes such 
as lin-4 and let-7, and suggested that others might 
be found.

A surprising link to RNA interference. Meanwhile, the
increasingly baroque phenomenology of double-
stranded RNA interference (RNAi) was being elucidat-
ed88–91. The introduction of exogenous double-strand-
ed RNA (dsRNA) into nematodes, by direct injection
or even by feeding, leads to the specific, rapid degrada-
tion of homologous mRNA(s), and a loss-of-function
phenotype. RNAi also works in many other organisms,
including plants, in which the effect has been called co-
suppression or post-transcriptional gene silencing89,91.

A few more than half of the new sequences seem to
be new snoRNAs — 72 new C/D snoRNAs and 41 new
H/ACA snoRNAs. Of these, several are orphans that do
not have obvious rRNA or snRNA targets. Some of
these snoRNAs showed brain-specific expression,
which would not be predicted for molecules involved
in ubiquitous rRNA modification. The human homo-
logues of three of these snoRNA genes mapped to the
crucial region for Prader–Willi syndrome, two of which
(HBII-52 and HBII-85) are C/D snoRNAs found in
multicopy tandem arrays, unlike most vertebrate
snoRNAs, which are found in single copies in the
introns of other genes. Both HBII-52 and HBII-85 are
expressed as imprinted genes only from the paternal
chromosome, as expected for a Prader–Willi candidate
gene. The HBII-85 array, located just to the left of (cen-
tromeric to) the non-coding IPW gene, was also detect-
ed as an imprinted ncRNA gene array by other stud-
ies48,79. The HBII-52 snoRNA has a perfect 18-bp
complementarity to 5-hydroxytryptamine 2C (5-HT

2C
)

receptor mRNA, and is predicted on that basis to
methylate a site of known mRNA editing; this indicates
a complex set of interactions in which a snoRNA might
regulate the editing of an mRNA transcript14,80.

Out of the 88 sequences that did not seem to be
snoRNAs, 20 that did not correspond to known mRNAs
or repetitive elements were confirmed as expressed,
small, discrete RNAs by northern blots, with sizes rang-
ing from 65 to 500 nucleotides. The functions of these
20 new small RNAs are unknown. Hüttenhofer and co-
workers are now analysing similar libraries from
Caenorhabditis elegans, D. melanogaster and A. thaliana.

MicroRNAs: one, two … infinity?
One: lin-4. A canonical example of the identification of
a ncRNA gene by genetics is the story of the lin-4 regu-
latory RNA in the nematode C. elegans. The lin-4 locus
was identified in a screen for mutations that affect the
timing and sequence of postembryonic development
(HETEROCHRONIC MUTATIONS) in C. elegans 81. Mutant ani-
mals reiterate the L1 larval stage rather than progress to
later stages of development. The gene was positionally
cloned by isolating a 693-bp DNA fragment that could
rescue the phenotype of mutant animals82. The paper by
Rosalind Lee and colleagues dryly recounts a careful
detective story, as Victor Ambros’s lab gradually realized
that they were dealing not with a protein-coding gene,

HETEROCHRONIC MUTATION 

A mutation that alters the
timing of developmental
events, such as the sequence of
larval moults in nematodes.
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Figure 2 | Examples of proposed interactions between the Caenorhabditis elegans lin-4 microRNA and a target
mRNA. lineage-4 (lin-4) is proposed to interact by base pairing with a,b | seven sites in the 3′ untranslated region (UTR) of lin-14
mRNA (first two of the seven sites are shown)129 and c | one site in the 3′ UTR of lin-28 mRNA84. A C residue (in red) is predicted
to be bulged in four out of the seven lin-14 interactions, including the two shown; this C is mutated to U in the strong loss-of-
function lin-4 ma161 allele82.
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unprocessed lin-4 and let-7 precursors96. In the course
of cloning and analysing the small RNAs produced
from an exogenous dsRNA, Thomas Tuschl’s lab noted
in passing that Drosophila seemed to contain endoge-
nous 21- and 22-mers94, and suggested that perhaps
there were naturally occurring siRNAs.

Introducing the microRNAs. Now, three papers show
that, indeed, lin-4 and let-7 are not alone — they
belong to a potentially very large family of small RNAs
in nematode, fly and human (and presumably other
organisms) that are being called the miRNAs. Nelson
Lau et al.16 produced and sequenced a C. elegans cDNA
library that was cleverly enriched for tiny RNAs with 
5′-phosphate and 3′-hydroxy termini, and obtained 55
new miRNAs. Lee and Ambros used a size-selected 
C. elegans cDNA library and, to a lesser extent, a com-
putational approach, to look for conserved sequences
in Caenorhabditis briggsae that can be folded into a
stem similar to the lin-4 and let-7 precursors, and
found 15 miRNAs15. Mariana Lagos-Quintana et al.17

used size-selected cDNA libraries in human and
Drosophila to isolate 33 miRNAs — 19 in humans and
14 in Drosophila.

In total, 91 different miRNAs have been identified so
far in the three species. Some of these are highly con-
served in evolution, such as let-7, and homologues of 11
miRNAs are found in more than one of the three
species. Northern blot analyses have been done for
many of these RNAs, and generally show both a 21–24-
nucleotide form (presumably the active miRNA) and,
often, a less abundant ~70-nucleotide form (presum-
ably the precursor stem–loop). The miRNA genes are
often clustered in the genome16,17 and might be co-
expressed in polycistronic precursor transcripts. Many
of the miRNAs were identified by single cDNA
sequences, so it is clear that none of these screens are
near saturation.

It seems that miRNAs are more likely to function as
translational repressors like lin-4, not as siRNAs in
directing mRNA degradation. Like lin-4, but unlike
siRNAs, miRNAs are produced asymmetrically from
the precursor stem and, almost invariably, only one
strand of the precursor stem can be recovered as a
21–24-nucleotide product, although the Bartel lab
reports a single exception16 (FIG. 3). Many miRNAs are
produced in a stage- and/or tissue-specific manner,
indicating possible roles in development akin to the
stRNAs. Some of the C. elegans miRNAs are specifically
expressed in the germ line and embryo, in which trans-
lational regulation is particularly prevalent16. If the par-
allels with lin-4 hold up, the miRNAs should be expect-
ed to direct translational repression by binding to one
or more sites with imperfect complementarity in the 
3′ UTRs of coding mRNAs (FIG. 2).

Another puzzling observation about RNAi now
seems to make more sense. Some of the genes impli-
cated in the RNAi-processing pathway have lethal
phenotypes or show developmental defects when
knocked out, which does not make sense if they are
functioning solely in RNAi and as an anti-virus

The input dsRNA is cleaved to form the active agents of
the RNAi effect — tiny 21–25-nucleotide small inter-
fering RNAs (siRNAs)92–94. Several proteins that are
important in the RNAi pathway have been identified,
including the putative processing nuclease Dicer and a
large family of homologous proteins including
Caenorhabditis RDE-1, Arabidopsis ARGONAUTE and
Drosophila Piwi. RNAi has been suggested to function
as a primitive immune system against RNA viruses and
retrotransposons90,91.

Many people noted with suspicion that the sizes of
the active lin-4 and let-7 stRNAs (22 and 21
nucleotides, respectively) are the same as those of the
siRNAs87,90,95. Indeed, the RNAi-processing pathway
shares components with the stRNA-processing path-
way. Knocking down Dicer function in human cul-
tured cells leads to accumulation of the 72-nucleotide
unprocessed human let-7 precursor93. Knocking down
either the function of the C. elegans Dicer homologue
or 2 of the 23 worm homologues of the rde-1/
ARGONAUTE/piwi gene family — alg-1 (argonaute-
like gene 1) and alg-2 — results in accumulation of
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Figure 3 | Three examples of microRNAs. Proposed
structure of the precursor stem is shown, with residues in the
mature microRNA (miRNA) shown in red. Comparison of
Caenorhabditis elegans miR-1 (REFS 15,16) with Drosophila
melanogaster miR-1 (REF. 17) shows perfect conservation of
the mature miRNA (except for length variability at the 3′ end).
Comparison of miR-1 with miR-84 (REF. 16) shows an
example of how mature miRNAs are produced
asymmetrically from either side of the precursor stem.
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exponential growth in rich media: four RNAs were only
expressed in stationary phase; five were preferentially
expressed in stationary phase; one was expressed
almost exclusively in cold-shocked cells; and one was
preferentially expressed in minimal media.

Karen Wassarman et al.20 looked for intergenic regions
that showed conservation to other genomes. They ranked
these candidate regions using further criteria, such as the
separation of the conserved region from nearby ORFs,
the presence of plausible promoter and terminator sig-
nals, and significant RNA expression detected on whole-
genome high-density oligo-probe arrays. They predicted
59 candidate ncRNA loci, 17 of which were shown by
northern blot analysis to produce discrete, small RNA
transcripts ranging from 45 to 320 nucleotides in size.
Again, several of these were shown to be expressed almost
exclusively in stationary phase cells. Seven of these RNAs
could be immunoprecipitated with antisera to the abun-
dant RNA-binding protein Hfq, which binds two previ-
ously known ncRNAs in E. coli — oxyS and dsrA.

Elena Rivas and co-workers have developed a general
ncRNA gene-finding algorithm101. The algorithm uses
comparative genome sequence analysis to detect con-
served sequence regions in which the pattern of muta-
tion is more consistent with conservation of a base-
paired secondary structure than with conservation of an
amino-acid coding sequence or with a null hypothesis
of uncorrelated position-independent mutation. The
approach is therefore limited to detecting only ncRNAs
with conserved intramolecular secondary structure. The
algorithm was used to screen the E. coli genome, and it
detected 275 candidate loci19. A sample of 49 of these
loci was analysed by northern blot analysis in a single
growth condition (exponential growth in rich media),
and 11 were found to produce small RNAs, ranging
from 40 to 370 nucleotides in size.

defence mechanism88,90,91. In C. elegans, knockdowns
of some genes in the rde-1/ARGONAUTE/piwi gene
family, such as rde-1 itself, produce RNAi-defective
phenotypes but no developmental phenotypes,
whereas knockdowns of others, such as alg-1 and 
alg-2, produce developmental phenotypes but are still
RNAi sensitive96. Therefore, it seems that in addition
to the RNAi effect itself, components of the RNAi-
processing pathway also function in developmental
regulatory processes that might involve numerous
endogenous miRNAs.

Even E. coli has been hiding something
The bacterium E. coli is arguably the best-studied
organism. The complete genome sequence of E. coli
K-12 contains an estimated 4,200 protein-coding
genes97. The small number of known ncRNA genes has
continued to climb slowly, as several small, stable RNAs
have been reported anecdotally98. Many of these seem to
be ‘riboregulators’99,100, which act by using base comple-
mentarity to specifically interact with translational start
sites and either repress or, more rarely, activate transla-
tion (FIG. 4). The recent availability of comparative
genome sequence information from Salmonella spp.
and other enterobacteria made it possible to go looking
for conserved sequences that might correspond to
ncRNAs, instead of coding ORFs.

Liron Argaman and colleagues computationally
analysed intergenic regions to identify loci that have a
predicted promoter and terminator spaced 50–400
nucleotides apart, and are significantly conserved in
other bacterial genomes18. They predicted 24 candidate
ncRNA genes, 14 of which were shown by northern
blot analysis to produce discrete, small transcripts rang-
ing from 70 to 250 nucleotides in size. Many of the
RNAs were expressed in conditions other than ‘normal’
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identification is often essential for pinpointing a mutant
locus, but candidate gene identification is biased
towards ORFs and coding genes. Maaret Ridanpää and
colleagues recently provided an excellent example in
human genetics. Cartilage–hair hypoplasia (CHH) — a
short-limbed dwarfism — was first described by Victor
McKusick almost 30 years ago105. Positional cloning
failed to identify the gene despite straightforward and
accurate genetic mapping106,107. Ridanpää et al. finally
increased the resolution of the genetic map by almost an
order of magnitude and sequenced the entire human
genomic region. All ten identifiable protein-coding
genes were studied, with no luck. CHH-associated
mutations were at last discovered in the 267-nucleotide
RMRP ncRNA gene, which produces the essential RNA
component of the ribonucleoprotein endoribonuclease
MRP (MRP stands for mitochondrial RNA process-
ing)108. The only reason RMRP was considered as a can-
didate gene was that human MRP RNA had previously
been isolated biochemically108 and its sequence was in
GenBank. Otherwise, Ridanpää and co-workers might
still be looking.

One other human genetic disorder has been mapped
to a nuclear-encoded ncRNA candidate gene by posi-
tional cloning — autosomal-dominant dyskeratosis
congenita patients have mutations in telomerase
RNA109. Here again, telomerase RNA was already in the
GenBank database and, moreover, it was an obvious
candidate gene, as an X-linked dyskeratosis had already
been associated with dyskerin — a protein known to
interact with telomerase RNA.

The power of comparative analysis. It is difficult to dis-
tinguish coding genes with short ORFs from ncRNA
genes. Many sequences have long ORFs and are obvi-
ously coding, but for others, coding potential is less con-
vincing. Protein-coding regions as small as seven amino
acids in length are known110. ORFs greater than 100
amino acids can occur just by chance in completely ran-
dom sequence; it has been argued that 10–15% of anno-
tated ORFs in microbial genomes are in fact spurious111.
ORF length and ‘coding potential’ alone is therefore
often insufficient to decide whether a gene is coding or
non-coding. Errors are being made in both directions.
The 360-nucleotide bacterial regulatory ncRNA CsrB103

was originally misannotated as a 47-amino-acid pro-
tein, because that was the ORF closest to several
mapped mutations112; the erroneous ‘protein’ sequence
is still in GenBank (Erwinia carotovora aepH,
AAB32243.1). Conversely, the plant (Medicago)
ENOD40 gene was first thought to be an ncRNA gene
on the basis of sequence analysis that showed “no signif-
icant coding potential”113. Now, on the basis of compar-
ative genome analysis and more detailed, directed muta-
genesis studies, the ENOD40 transcript seems to encode
two tiny proteins that are 13 and 27 amino acids long114.

Comparative genome analysis is an indispensable
means of inferring whether a locus produces a ncRNA
as opposed to encoding a protein. For a small gene to be
called a protein-coding gene, one excellent line of evi-
dence is that the ORF is significantly conserved in

In total, three systematic screens have identified 34
new ncRNA transcripts in E. coli, of as yet unknown
function. There is little overlap in the confirmed tran-
scripts (only eight were confirmed by more than one of
the screens). This indicates that these screens have not
saturated the E. coli genome for new ncRNAs. Of the 27
genes confirmed by one or both of the screens carried
out by Argaman et al. and Wassarman et al., 21 are in
the candidate list proposed by Rivas and colleagues,
indicating that the sensitivity of the computational gene
finder is fairly high. The experimental characterization
done by Argaman et al. and Wassarman et al. shows that
many ncRNAs are being expressed in specific growth
conditions, something that had already been seen for
known E. coli ncRNAs; for instance, for the oxyS RNA
(expressed in oxidatively stressed cells)102 or the csrB
RNA (expressed in stationary-phase cells)103. This indi-
cates that the examination of a single growth condition
by Rivas et al. was insufficient, and shows that confirm-
ing the expression of a candidate ncRNA gene is not
necessarily straightforward.

How many new ncRNAs is E. coli still hiding?
Simulation studies of the false-positive rate in the study
by Rivas et al. indicate that 200 or more of the 275 gene
predictions should be real ncRNAs (or more precisely,
biologically relevant sequences conserving an RNA
structure; the approach cannot easily distinguish cis-
regulatory RNA structures from independent ncRNA
genes)19. Wassarman and colleagues proposed that it
would be unlikely that more than 50 new ncRNAs
would be found in E. coli20. A fourth screen, using a sin-
gle-sequence neural-net-based computational gene-
finding approach in E. coli, predicted 370 sequence win-
dows to be ncRNA genes (because the windows could
overlap, this means a somewhat smaller number of
RNA gene loci)104. These predictions have yet to be
experimentally verified, and the amount of overlap with
the other screens needs to be examined.

Matters arising
Many genes, little genetics. On the one hand, we have
genomic screens that are unsaturated and must provide
just a taste of larger numbers of ncRNA genes to come.
On the other hand, if there were many ncRNA genes,
one would think that they should have been detected
sooner in classical genetic screens. (Most biochemical,
computational and molecular biology gene-discovery
approaches make strong assumptions about finding
proteins, ORFs and mRNA, so it is easier to rationalize
their failure to detect ncRNAs.) There are some biases
even in classical genetics, though. Strikingly, few of the
known ncRNA genes have been identified by genetics.
For example, none of the known E. coli small RNAs
have been identified by mutational screens20,98. RNA
genes are immune to frameshift or nonsense mutations,
and are often small and multicopy, which makes them
difficult (even impossible) targets for recessive muta-
tional screens.

An interesting extra source of bias is introduced in
going from a mapped genetic locus to a cloned gene.
Especially in more complex systems, candidate gene
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gene-finders that work on a single genome sequence
have been stymied by the apparent lack of much signifi-
cant statistical signal in ncRNAs115,116, compared with
the strong ORF and codon bias signals exploited by pro-
tein-coding gene-finders. However, an apparently suc-
cessful single-sequence RNA gene-finder, using a NEURAL

NETWORK approach, has recently been reported104, and it
might also be possible to identify untranslated, spliced
ncRNAs by the computational identification of clus-
tered splice-site signals117.

Second, cDNA cloning strategies that are specifically
designed to enrich for ncRNAs have been very fruitful.
The most obvious enrichment strategy is simply to clone
and sequence small RNAs from total RNA (as opposed
to the usual selection of large, cytoplasmic, polyadenylat-
ed mRNA for cDNA cloning and EST sequencing)14.
Enrichment by immunoprecipitation with antisera
against proteins that associate with specific families of
ncRNAs is another strategy that has been used for
decades; examples include the isolation of snRNAs using
anti-SM autoantibodies35 and isolation of C/D snoRNAs
using anti-fibrillarin sera71. Some ncRNAs can be
enriched by virtue of 5′ ends that differ from the ‘nor-
mal’ mRNA cap; intronic snoRNAs and miRNAs, for
example, have simple 5′ phosphates that are substrates
for RNA ligase16,56. Enrichment by exploiting the subcel-
lular localization of ncRNAs can also be useful, as in the
isolation of snoRNAs from cDNA libraries made from
purified nucleoli56. There must be other clever enrich-
ment schemes. Unenriched public EST and cDNA
sequence libraries can also be mined for transcripts that
lack significant ORFs, although at some danger of being
confused by small ORFs, frameshift sequencing errors,
or long UTRs of mRNAs.

Third, it should be possible, in principle, to detect
new transcripts (both ncRNA and protein-coding RNA)
using high-density oligonucleotide microarrays that sys-
tematically probe an entire genome, rather than just
probing expression of known and predicted protein-
coding genes. However, experience with E. coli whole-
genome chips has been variable. Successful detection of
some known ncRNAs has been reported anecdotally118;
but in systematic use, such data have proved to be more
useful as corroboration rather than a primary screen20. I
would expect these data to become more useful as
microarray technology continues to improve.

The modern RNA world
The discovery of RNA catalysis119,120 and the “RNA
world” hypothesis for the origin of life26,121 provide a
seductive explanation for why rRNA and tRNA are at
the core of the translation machinery: perhaps they are
the frozen evolutionary relic of the invention of the
ribosome by an RNA-based ‘riboorganism’122. Other
known ncRNAs have also been proposed to be ancient
relics of the last riboorganisms123–125. The romantic idea
of uncovering molecular fossils of a lost RNA world has
motivated searches for new ncRNAs. However, as these
searches start to succeed, more and more ncRNAs are
being found to have apparently well-adapted, special-
ized biological roles. The idea that ncRNAs are a small

another related species. For almost all protein-coding
genes (those undergoing PURIFYING SELECTION or NEUTRAL

DRIFT, but perhaps not those under POSITIVE SELECTION), the
pattern of mutation should also favour synonymous
and conservative amino-acid changes. Comparative
analysis has been instrumental in many cases of distin-
guishing ncRNA genes from small protein-coding
genes, including the examples above. It is more difficult
to positively corroborate a ncRNA by comparative
analysis but, in at least some cases, a ncRNA might con-
serve an intramolecular secondary structure and com-
parative analysis can show compensatory base substitu-
tions19,101. With comparative genome sequence data now
accumulating in the public domain for most if not all
important genetic systems, comparative analysis can
(and should) become routine.

Discovering new non-coding RNA genes. There are now
three main lines of attack for systematically identifying
new ncRNA genes. First, computational comparative
genome analysis seems to be a very powerful approach.
All three ncRNA screens in E. coli exploited comparative
analysis18–20, as did one of the screens for new miRNAs
in C. elegans15. These approaches range in complexity
from BLASTN screens that identify conserved regions
that do not correspond to apparent ORFs, to identifying
regions that conserve some particular type of RNA
structure (such as the miRNA precursor stem), to a gen-
eral ncRNA gene-finding program looking for any sig-
nificant conserved intramolecular secondary struc-
ture101. Previous attempts to develop ncRNA
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RNA. In cases requiring more sophistication than sim-
ple steric blockage, necessary catalytic functions can be
delegated to a small number of shared proteins, whereas
specific sequence recognition functions are carried out
by a horde of individual small RNAs that interact with
these proteins. John Morrissey and David Tollervey have
proposed that modification-guide snoRNAs arose in
this way, as a more modular system that replaced a
smaller number of site-specific protein methylases and
pseudouridylases126.

The idea that ncRNA would be well adapted for reg-
ulatory roles is not new35,50,127. In the process of defining
many of the concepts of molecular genetics, including
mRNA and operons, François Jacob and Jacques
Monod distinguished “structural genes” (such as lacZ)
from “regulatory genes” (such as lacI)128. At that time,
regulators such as lacI had only been defined genetically,
and they were known to specifically interact with cis-
acting sequences (such as lacO), either at the DNA or
mRNA level. Jacob and Monod reasoned that base com-
plementarity would allow RNA to interact highly specif-
ically with other nucleic-acid sequences. They proposed
that structural genes encoded proteins, and regulatory
genes produced ncRNAs (FIG. 5). Forty years later, their
proposal is looking more relevant than ever.

and ragged band of relics looks increasingly untenable.
The tiny stRNAs and miRNAs, for example, seem to be
highly adapted for a world in which RNAi processing
and developmentally regulated mRNA targets exist.

Therefore, consider an alternative idea — the “mod-
ern RNA world”. Many of the ncRNAs we see in fact
have roles in which RNA is a more optimal material
than protein. Non-coding RNAs are often (though not
always) found to have roles that involve sequence-
specific recognition of another nucleic acid. (The choice
of examples in FIGS 1, 2 and 4 is deliberate, showing how
snoRNAs, miRNAs and E. coli riboregulatory RNAs all
function by sequence-specific base complementarity.)
RNA, by its very nature, is an ideal material for this role.
Base complementarity allows a very small RNA to be
exquisitely sequence specific. Evolution of a small, spe-
cific complementary RNA can be achieved in a single
step, just by a partial duplication of a fragment of the
target gene into an appropriate context for expression of
the new ncRNA.

Many functional roles do not require the more
sophisticated catalytic prowess of proteins and could be
carried out by simple RNAs. Post-transcriptional regu-
lation, in particular, can be achieved simply by steric
occlusion of sites on a target pre-mRNA or mature
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The following terms in this article are linked online to:
LocusLink: http://www.ncbi.nlm.nih.gov/LocusLink/
Dicer | dyskerin | H19 | IPW | MRP | Piwi | RMRP | roX | SCA8 |
telomerase | XIST
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autosomal-dominant dyskeratosis congenita | cartilage–hair
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alg-1 | alg-2 | let-7 | lin-4 | lin-14 | lin-28 | lin-41 | lin-42 | RDE-1 
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