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Sequence similarity search programs are versatile tools for the molecular biologist,
frequently able to identify possible DNA coding regions and to provide clues to gene and
protein structure and function. While much attention had been paid to the precise
algorithms these programs employ and to their relative speeds, there is a constellation
of associated issues that are equally important to realize the full potential of these
methods. Here, we consider a number of these issues, including the choice of scoring
systems, the statistical significance of alighments, the masking of uninformative or
potentially confounding sequence regions, the nature and extent of sequence
redundancy in the databases and network access to similarity search services.

The advent of rapid DNA sequencing technology in the
mid-1970sled to an information explosion that continues
unabated today. Molecular sequence data have become
the common currency of biomedical research and often
provide unexpected links among diverse biological
systems. These connections accelerate research progress
and may even open up entirely new fields of inquiry. One
approach to discovering such connections, database
“homology” searching, has been executed countless times,
often with surprising results and has become an essential
method for the molecular biologist. While the particular
algorithm used is of course important, the effectiveness of
database searches is dependent as well on a large number
of correlative factors, many of which tend to be overlooked
or dealt with an an inefficient or ad hoc manner. These
include the following:

Scoring systems. Most database search algorithms rank
alignments by a score, whose calculation is dependent
upona particular scoring system. Usually there is a default
system, but it may not be ideal for a user’s particular
problem. For example, haemoglobin subunits used to be
regarded as “typical” proteins and are often still used as
benchmark query sequences for evaluating new database
search techniques and scoring systems. However today it
is more common to encounter much larger and more
complex sequences (see below) and methods developed
and optimized for small, uniformly-conserved, single-
domain proteins are inadequate. Scores that are best for
detecting similarities between greatly diverged sequences
differ from those best for detecting short but nearly
identical segments“?. Optimal strategies for detecting
similarities between DNA protein-coding regions differ
from those for non-coding regions*. Special scoring
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systems for detecting frame-shift errors in the databases
have recently been described®. A database search program
should therefore make avariety of scoring systemsavailable
and users should be aware of which ones are best suited to
their problems.

Alignment statistics. Given a query sequence, most
database search programs will produce an ordered list of
imperfectly matching database similarities, but none of
them need have any biological significance. An important
question is how strong a similarity is necessary to be
considered surprising. United by a common theory, a
number of analytic®® and empirical results>'*" are now
available for assessing database search results. However,
onestill sees occasional extravagant claimsin theliterature,
usually springing either from misapplication of thenormal
distribution or from an absence of critical statistical
analysis.

Databases. The use of an up-to-date sequence database is
clearly a vital element of any similarity search. Sequence
relationships critical to important discoveries have on
occasion been missed because old or incomplete databases
were employed. However, the variety of databasesavailable,
and their overlapping coverage, has the potential to render
similarity searching cumbersome and inefficient. This no
longer need be the case. Timely access to complete and
“nonredundant” sequence databases hasbecome relatively
simple and inexpensive.

Database redundancy and sequence repetitiveness.
Surprisingly strong biases exist in protein and nucleicacid
sequences and sequence databases. Many of these reflect
fundamental mosaic sequence properties that are of
considerable biological interest in themselves, such as
segments oflow compositional complexity or short-period
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Table 1 The BLAST family of programs
Program*  Query Database Comments
sequence  sequences
BLASTP  protein protein e Default scoring matrix® is BLOSUM62;
change with command line option
“M=PAM250”, for example
* Low-complexity masking with “-filter”
option; choice of either the SEG®” and XNU?*
algorithms
BLASTN nucleotide nucleotide e Parameters optimized for speed, not
(both strands) sensitivity; not intended for finding distantly-
related, coding sequences
¢ Automatically checks complementary strand
of query
BLASTX nucleotide protein ¢ Very useful for preliminary data containing
(six-frame potential frameshift errors*
translation) ¢ Nine different genetic codes available®;
change with command line “C=1" (vertebrate
mitochondrial) for example
e | ow-complexity filter option as for BLASTP
TBLASTN protein nucleotide e Essential for searching protein queries
(six-frame  against dbEST*®

translations) ¢ Often useful for finding undocumented open
reading frames or frameshift errors in
database sequences
* Same genetic code options as for BLASTX

éThese programs are available through the BLAST Network and e-mail servers (see
text) and the source codes are available by anonymous ftp on ncbi.nim.nih.gov.
bMore than 65 different PAM':2353840 B] OSUM*'5 and other scoring matrices are
available. PAM120 or BLOSUMBG62 are best for general purposes but a useful
combination for detecting strong and short to long and weak similarities consists of
PAM30, PAM120 and PAM250 (ref. 2).

°Default genetic code (C=0} is “standard” or “universal” code. Other codes available
include: 1, Vertebrate mitochondrial; 2, Yeast mitochondrial; 3, Mold mitochondrial
and mycoplasma; 4, Invertebrate mitochondrial; 5, Ciliate macronuclear; 6, Protozoan
mitochondrial; 7, Plant mitochondrial; and 8, Echinodermate mitochondrial.

repeats. Databases also contain some verylarge families of
related domains, motifs or repeated sequences, in some
cases with hundreds of members. In other cases there has
been a historical bias in the molecules that have been
chosen for sequencing, In practice, unless special measures
are taken, these biases very commonly confound database
search methods and interfere with the discovery of
interesting new sequence similarities. Problems include
the occurrence of misleading, spuriously-high scores,
ambiguities in the phase of sequence alignments and
overwhelmingly large output lists in which interesting
results may be inconspicuously buried. We shall describe
some recently developed methods that largely solve these
problems by automatically detecting and masking
potentially confounding subsequences.

Failure to deal properly with the factors described above
can result in chance similarities being claimed significant,
or biologically important relationships being overlooked.
Here, we shall discuss these and several other issues in
database searching. While we will frequently use the BLAST
programs*™* (Table 1) as examples, most of the questions
considered have quite general relevance.

Algorithms and programs

The earliest sequence comparison studies focussed on the
alignment of complete sequences'*”. However, with the
recognition that proteins frequently share only isolated
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regions of similarity, corresponding for instance to
structural motifs or active sites, attention shifted to
algorithmsforlocalalignment'®-2!. Essentiallyall database
search methods have been based upon measures of local
sequence similarity.

In general, local alignments are assessed by means of a
score, which is computed as the sum of scores for aligned
pairs of residues and scores for gaps'®. How these scores
are chosen, and what they signify, is discussed below. The
time necessary to find alignments that optimize such
scoresis sufficiently great that, for most practical purposes,
either parallel architecture machines® 2 or heuristic
methods such as Fasta?”?® are required. The problem may
be simplified by forbidding gaps. This leads to faster
heuristicmethods such asthe BLAST algorithms*" (Table
1), as well as to efficient hardware implementations®.
While some sensitivity to weak similarities may be lost by
eschewing gaps®, easier generalization®® and rigorous
statistical results*® become available. Alternatively, local
alignments maybe assessed ina more sophisticated manner
than by the simple sum of substitution and gap scores®.
This may lead to more sensitive detection of weak
similarities, but at the price of greatly increased
computation time®,

In general, the relevant considerations in choosing a
particular algorithm are hardware requirements, speed
and sensitivity to biological relationships. The tensions
between these competing claims are resolved variously by
programs such as Fasta?®, BLAST* and Blaze®. The relative
merits of these and the other programshavebeen discussed
atlength elsewhere®®*. The idea of optimizing a measure
of local similarity is common to virtually all popular
programs, and the results they produce therefore do not
differ in any truly essential way.

Local alignment statistics

Not all biologically important sequence relationships will
be detected by sequence similarity search programs and,
even when found, they may be lost among irrelevant or
chance similarities. While experiment is the ultimate
arbiter of biological significance, mathematical analysis
can indicate which similarities are unlikely to have arisen
by chance and therefore merit special attention. Thus an
important question concerning alignments produced by
any database search is whether they can be considered
statistically significant.
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Fig. 1 The probability density function of the extreme value
distribution with characteristic value u=0 and decay
constant A=1.
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Oneapproach sometimes taken is to record an optimal
local alignment score for each database sequence and
then to report these scores as standard deviations from
the mean. There are several serious and frequently
unrecognized pitfalls to this procedure. First, the optimal
scores for the comparison of a query sequence to different

database sequences can not be assumed to be drawn from
the same distribution. The longer a given database
sequence, the greater the score expected by chance. Also,
variation in residue composition among sequences can
yield different score distributions. Second, unless a
rigorous optimization algorithm is employed, the true

Box 1 The extreme value distribution and local sequence similarities

Just as the sum of many independent random variables results naturally in a normal distribution, the maximum of
many independent random variables yields an extreme value distribution™. (For rigour, this statement must be
qualified in many ways, but we will omit the technicalities here.) Because the score of an optimal local alignment is,
for practical purposes, the maximum of many essentially independent alignment scores, the extreme value
distribution plays a central role in the statistics of local sequence alignments. This distribution may be described by
two parameters, the characteristic value, u, and the decay constant, A; the probability of observing a score greater
than or equal to x purely by chance is given by the formula

1-exp(—e )

The probability density of the standard extreme value distribution, with u=0 and A=1, is shown in Fig. 1. For random
sequences, the maximal segment pair scores used by the BLAST algorithms*'#?' can be shown to obey an extreme
value distribution'®®, While analysis is not available for the scores of alignments with gaps, experiment'®'? and
analogy®®4679-81 strongly suggest that they too should obey this type of distribution.

In order to use the formula above, one needs to estimate the relevant parameters u and A for a given sequence
comparison. These will, in general, depend upon the composition and length of the sequences being compared, and
upon the particular scoring system used. For alignments with gaps, the parameters may be estimated by random
simulation™, or by examining optimal local alignment scores from unrelated sequences''2. For ungapped
alignments, the parameters may be calculated directly®®, In this case, the parameter v may be written as

In Kmn
U=

where m and n are the sequences’ lengths and K and A may be calculated from the substitution scores and
sequence compositions®®,

We have described how to calculate the probability, p, that a given local-alignment score would arise from the
comparison of two random sequences. This probability must be adjusted for the multiple comparisons performed in
a database search (see text). The applicable Poisson distribution implies that the probability of observing at least one
alignment with pairwise p-value p from a search of a database containing D sequences may be estimated as

P=~1-e®r

When P<0.1, it may be well approximated as simply Dp. This approach makes the implicit assumption that all
sequences in the database are a priori equally likely to share some relationship with the query. An alternative view,
based on the idea that many proteins possess multiple domains, is that all equal-length protein segments in the
database are a priori equally likely to be related to the query. This approach implies a different normalization. Assume
that the alignment of interest involves a database sequence of length n residues, and that the complete database has
N residues. Then, in the equation above, D should be replaced by N/n. This is the default normalization currently
employed by the BLAST programs. (In the context of DNA as opposed to protein database searches, it is the only
normalization that really makes sense.) Reasons for calculating significance in the context of pairwise protein
comparisons in the first place, rather than sequence-database comparisons, are to allow for multiple high-scoring
alignments and for protein compositional heterogeneity.

The BLAST programs™'* (Table 1) may generate several high-scoring alignments for a given pair of sequences.
While the significance of these alignments may be assessed individually, it is frequently of value to construct a
combined assessment. One method uses the fact that the number of segment pairs expected by chance to have
score at least x is approximately Poisson distributed, with parameter e ¥ (refs 6-8). Thus, if three distinct segment
pairs with scores 50, 45 and 40 are found in a given pairwise comparison, one may calculate the probability p that at
least three pairs, all with score at least 40, would appear by chance. This approach has the weakness of depending
upon only the lowest among the r greatest scores. Alternatively, one may calculate the sum S, of the r highest scores.
The random distribution of such sums has been derived and the appropriate tail probability is available numerically
as a double integral®.

The BLAST programs currently use the former, Poisson method, of assessing multiple high-scoring segment pairs.
Not all sets of segment pairs, however, warrant a joint assessment. Only when such a set may be combined into a
consistent, gapped alignment is it really appropriate to consider the separate segment pairs as parts of a greater
whole. Accordingly, as a default, the BLAST programs require such consistency before calculating a joint statistical
assessment. The imposition of such consistency has the further advantage of sharpening the joint statistics®.

The problem of multiple tests arises again in using either the Poisson or sum p-values described above. For
example, while the probability for finding at least three segment pairs with score at least 40 may be valid, in practice
one has considered as well the single best segment pair in isolation, the two best segment pairs, etc. These multiple
tests can result in too optimistic a significance claim for the best overall result. P. Green (personal communication)
has suggested a simple solution to this difficulty: dividing the p-value for a result involving r segment pairs by the
factor (1-a)a™', where a is a constant between 0 and 1, yields a conservative p-value for the multiple tests. The
parameter a can be viewed as a “gap penalty.” Choosing a near 0 greatly favours results involving a single segment
pair. Choosing a near 1 favours results with fewer segment pairs only slightly, but may underestimate significance
because of the actual non-independence of the multiple tests. The p-values reported by the BLAST programs
implement this multiple test discount procedure, with a default of a=0.5. 4
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tends grossly to exaggerate an alignment’s significance.
sequences, a score with probability 10~ of arising from a
single comparison is only marginally significant in the

context of the complete search. The last two points alone

independent trials. If the database contains 50,000
imply that an alignment may easily achieve a score over
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underestimated and the shape of the true distribution Finally, a database search involves many essentially

optimal pairwise scores will be systematically
willbeill-determined. Third, comparinga query sequence
to aset of uniformlength random sequences yields scores
that obey not a normal but an extreme valuedistribution
(Box 1 and Fig. 1). The tail of this distribution decays
exponentially in x rather than x% so assuming normality
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ten standard deviations from the mean yet fail to be
statistically significant.

Box 1 discusses the extreme value distribution and how
it may be used to calculate the probability that a gap-free
local alignment with a given score would arise from the
comparison of two random sequences. It also describes
how to modify this probability to account for the “multiple
tests” of a database search. Suchasearch canitselfgenerate
data which provide an alternative to the analytic method
(Box 1) for estimating alignment statistical significance.
For a given query, one records the best alignment score to
each database sequence. If score Sis observed f(S) times,
then plotting log f(S) versus S tends to produce a straight
line; extrapolation of this line can yield estimates of
statistical significance'?.

One advantage of this approach is that it is applicable
to cases for which no rigorous theory is available, such as
scores from gapped alignments. Thus heuristic programs
such as Fasta®, or parallel implementations of the Smith-
Waterman algorithm' such as Blaze?® or Blitz*, can
estimate statistical significance using this method.
Furthermore, because the scores generated derive from
comparisons of real sequences, no “random protein”
model is needed. A disadvantage of the method is the
need to generate optimal alignment scores for a substantial
fraction of database sequences in order to calculate
statistical significance. Potential inaccuracy arises from
variation in database sequence size and composition,
which implies that each data point is really drawn from
a separate distribution®'%?, Also, if many sequences
related to the query are present (see discussion on database
redundancy below), it may be difficult to base the plotted
line upon only unrelated sequences. Analternative “curve
fitting” approach is to estimate the parameters of the
implicit extreme value distribution for the scoring system
at hand>'*'“"*, In one form or another, curve fitting will
generally be necessary to calculate the statistical
significance of scores derived from gapped alignments or
other complex scoring systems*'%,

The most important “failure” of the local alignment
statistics discussed here is on comparisons of regions with
restricted or unusual amino acid or nucleotide
composition. Such regions are quite common in proteins,
but are clearly not well described by the same random

model used for other sequence regions (see below). Because
an alignment of such “low complexity” regions has little
real meaning, it is best simply to note their existence, but
exclude them from alignments produced in database
searches (see Figs 2 and 3 for examples).

Scoring matrices and gap costs
Many different amino acid substitution score matrices
have been proposed over the years for use with sequence
comparison and database search programs“***, and a
variety of rationales have been used for their construction.
However, it is possible to show that in the context of
secking high-scoring segment pairs without gaps, any
such matrix has an implicit amino acid pair frequency
distribution that characterizes the alignments it is
optimized for finding. More precisely, let p, be the
frequency with which amino acid i occurs in proteins
sequences and, within the class of alignments sought, let
g, be the frequency with which amino acids i and j are
igned. Then the scores that best distinguish these
alignments from chance are given by the formula
S.=log 4
if P ipj
The base of the logarithm is arbitrary, affecting only the
scale of the scores. Any set of scores useful for local
alignment can be written in this form, so a choice of
substitution matrix can be viewed as an implicit choice of
“target frequencies” q'.j(refs 1,6).

The target frequencies characterizing alignments of
closely related sequences clearly differ from those for
alignments of sequences that are greatly diverged.
Therefore a single matrix can not be optimal for
recognizingrelationshipsatall evolutionary distances'>'2,
It has been argued that for most practical purposes, three
separate matrices should be adequate for locating all
alignments containing sufficient information toriseabove
background noise?. The question remains how best to
estimate the appropriate corresponding target frequencies.

Estimating the frequencies with which the various
amino acids tend to mutate into one another is a
necessarily empirical problem. The first approach to the
question was taken by Dayhoff and coworkers®*?. Their
“PAM” model of molecular evolution allowed target
frequencies and the corresponding score matrices to be

«Fig. 2 Significant sequence matches of the human MTG8 product: the effect of low-complexity masking. MTG8 (ref. 84) is the translated
product of a chromosome 8 gene involved in a t(8:21) translocation that results in an AML1-MTG8 fusion transcript in a case of acute
myeloid leukaemia (GenBank accession number D14820). a, Automated segmentation of low-complexity sequences in MTGS at relatively
high stringency. To be defined as low-complexity in this run of the SEG algorithm (Box 2), a sequence region must contain at least one 12-
residue window with complexity (K, Box 2) less than 0.315. SEG then finds the minimally probable (lowest P, Box 2) low-complexity
subsequence, of any length, within the overlapping windows of this region. The sequence segments read from left to right and their order in
the polypeptide runs from top to bottom, as shown by the central column of residue numbers. b, The strong match, which emerges clearly
without masking (Poisson p-value 2.5 x 10, between sections of MTG8 and Drosophila melanogaster transcription factor TFIID 110-kDa
subunit®=, ¢, MTGS filtered as in (a) but with the low-complexity segments masked by “x” characters, for use as a query sequence in
database searches. d, The significant match between a region of MTG8 containing a cysteine cluster and rat apoptosis protein RP-8. RP-8
(ref. 87) is a gene expressed early in the process of programmed cell death (apoptosis) following glucocorticoid induction in rat thymocytes
{GenBank accession number M80601). This match®, had a Poisson p-value of 0.0036 for a BLASTP search of the NCBI non-redundant
database of 13th September 1993. *, identical amino acids; |, Conserved Cys or His residues. Also shown is a sample of the class of zinc-
fingers that occur in the DNA binding domain of the steroid receptor family®, indicating a suggestive similarity (which is not statistically
significant by pairwise alignment statistics and would require experimental confirmation) in the positions of most of the Cys or His residues.

Before low-complexity filtering, MTG8 generated an output list from the NCBI non-redundant database of greater than 400 Kbytes
containing 599 database sequences scoring above the BLASTP default threshold. The significant match to apoptosis protein was an
inconspicuous 62nd in this list and scored much lower than many spurious low-complexity matches. After masking of MTG8 as in (b), this
match was 6th in a list of 83 sequences. The latter list contained many matches to a “medium complexity” region of MTG8 which is
tentatively predicted to be alpha helical coiled coil {residues 41 6-4786). Further filtering with SEG at lower stringency (K < 0.365 for a 14-
residue window) effectively masked this region, and resulted in a BLASTP output list of only 9 sequences, in which the apoptosis protein
was ranked in score only below the MTG8 self-matches and the match to TFIID 110-kDa subunit.
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Box 2 Low-complexity sequences and short-period tandem repeats

To study low-complexity sequences and short-period tandem repeats, we first consider
sequences as mixtures of regions with unknown statistical properties and then attempt to infer
these properties. In order to put all possible low-complexity segments on an equal footing, we
define local compositional complexity ignoring prior probabilities for the 20 amino acids or 4
nucleotides® #2#. Complexity is a function of the compositional state of a sequence segment or
window. For example, the numbers (3,2,2,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0), representing, in
decreasing order of abundance, counts for the various amino acids, describe one of the 77
possible complexity states of a 12-residue peptide window. Many possible sequences and
amino acid compositions, with different residue types corresponding to the 20 numbers, share
this complexity state. Formally, we define the local compositional complexity K of a sequence
window of length L, as

where the n are the 20 numbers in the compositional state vector described above. Analogous
to the enumeration of microstates in statistical mechanics, K measures the information per
position needed, given the window’s composition, to specify a particular residue order.
Assuming uniform prior probabilities for the appearance of the various residues, the probability
P, for the occurrence of a given compositional state is

e A N

Fy= 20| &2 i
Hn,! I—["k!
i=1

k=0

where r, is the count of the number of times the number k occurs among the n,. K and P, are
functions of only the complexity state vector; they do not depend on which amino acids
correspond to the 20 numbers in the vector or on the actual probabilities of the various amino
acids. For the DNA alphabet, 4 replaces 20 in the above equations®#,

SEG® is an optimal segmentation algorithm based on the theory described above. It
identifies, at a defined level of stringency, all the low-complexity segments in a sequence that
minimize P, within a local region of low K. A similar approach may be used to identify tandemly
repeated segments of any defined period; methods for the purpose are under development. A
heuristic algorithm, XNU™, for identifying and masking short-period repeats finds self-matching
segments that yield high PAM or BLOSUM scores when offset by a small number of residues,
regardless of local compositional complexity. With appropriate parameterization, XNU and SEG
are complementary.

Programs such as SEG and XNU may be used to mask appropriate query sequence segments
prior to database searching, replacing the residues in these segments by “x” characters (see Fig.
1¢). The score for “x” in each row or column of a PAM or BLOSUM amino acid matrix may be
calculated as the mean of the 20 residue—pair scores in that row or column, insuring that the
impact of the masking character on the distribution of matching segment scores is minimal. O

matrices are perhaps nearly optimal
for this more general case. Gapped
alignments present the additional
problem of choosingappropriate gap
costs*’. The simplest algorithms
require these costs to be a linear
function of gap length*®->°, but
efficient algorithms for more general
gap costs are also available®’. Because
notheory exists, appropriate gap costs
have generally been chosen by trial
and error, although there have been
some recent efforts to give this
problem a sounder empirical
footing®>*.

The user of database search
programs should recognize that the
default substitution scoresand, where
applicable, gap costs, have generally
been chosen to be appropriate for the
most frequent sort of query. These
scores may not, however, be optimal
for a specific problem. In particular,
matrices such as PAM-120 or
BLOSUM-62 (the current BLASTP
default)*! are tailored for alignments
of moderately diverged sequences.
Very strong but short similarities, or
very long but weak ones may easily be
missed by these matrices’. A fully
functional database search system
should therefore provide a range of
scoring systems to its users, so that
the algorithm can be adapted to the
problem at hand.

Databases and access

The most important requirement for
database  searching is a
comprehensive, up-to-date database.
Full releases of GenBank® now occur
every two months, and daily updates
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calculated for any desired amount of evolutionary change.
The details of the PAM model have been criticized*, and
thevastincrease in available sequence data has prompted
recalculation of the model’s parameters®®*. Scores for
DNA sequence comparison based on a PAM-like
mutational model have also been described’. A different
approach to estimating appropriate target frequencies
relies not on fitting an evolutionary model, but rather on
the direct observation of relatively distant, but
nevertheless presumed largely correct, sequence
alignments*!. A variety of empirical tests have been
claimed to support the superiority of the resulting
“BLOSUM” matrices for detecting sequence
homology***. Lacking an evolutionary model, however,
this approach is less adaptable to generating matrices
tailored to specific applications®.

The theory linking substitution matrices with target
frequencies is rigorously established only for local
alignmentslacking gaps. Therefore the development above
is generally valid only for the BLAST and related
algorithms*'“*. A more general theory for alignments
with gaps should, however, have the same broad
outlines'®®, and target frequency based substitution

are available for downloading or direct searching by e-
mail and network services®. GenBank has undergone a
major expansion in data coverage and now includes, in
addition to nucleotide sequences, data from the major
protein sequence and protein structure databases, as well
as data from U.S. and European patents*. Approximately
36% of the records in GenBank are produced by the
international collaborators, EMBL Data Library® and the
DNA Database of Japan (DDBJ), with whom database
updates are exchanged daily. Copies of the databases are
available at many sites worldwide>*,

GenBank (release 80.0) contains 164 megabases of
sequence and is doubling in size every 21 months (D.
Benson, personal communication). This rate can only
increase as a result of genome projects and automated
sequencing technology. As mentioned above, special
purpose computers have a role in maintaining reasonable
search performance in the wake of this data deluge, but
considerable improvements in search efficiency can be
obtained by considering the nature of the data itself.

Many sequence databaseshave alarge degree of internal
“redundancy” for historical reasons related to available
technology and research trends, and also due to the
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existence of clusters of closely-related sequences from
multigene families. Also, equivalent gene products have
frequentlybeen sequenced inanumber of different species
or organisms. In release 36.0 of PIR International®, for
example, there were 653 members of the globin
superfamily, 349 cytochromes ¢, 583 sequences with
immunoglobulin domains and 274 protein kinases.
Considering only perfectly matching sequences, among
the 52,257 protein sequences in this database, there are
over 3,900 duplicate entries and over 3,800 perfect
substrings of longer entries that together comprise about
109% of the total amino acid residues. Among nucleic acid
sequencesthere arethousands of Aluvariantsin GenBank.
And the problem of redundancy is only getting worse: as
a result of projects designed to sample expressed genes
rapidly”-%, tens of thousands of sequence fragments are
being added to the databases®; many of these sequences
represent small pieces of known genes. Due to the error-
prone nature of these sequence fragments®, identifying
redundancy in these collections is a more difficult task.
As well as decreasing the speed of database searches,
redundancy can obscure novel matches in the output, by
yieldingslews of similar oridentical alignments. Practically,
there are two simple ways to avoid this problem: i)
construct a smaller “nonredundant” database®'; ii)
preprocess the query sequence for the presence of known
domains and mask these prior to searching. (The concept
of query masking is discussed in the next section.)
NCBI®? maintains two quasi-nonredundant sequence
collections (NRDB), one for proteins and one for nucleic
acids. For example, the protein NRDB is constructed
iteratively starting with SWISS-PROT®, which is the
smallest and least redundant of the major protein
databases. All of the proteins in PIR International®® are
compared to those in SWISS-PROT, and identical
sequencesare excluded from the former while maintaining
pointers to relevant annotation. Next, all of the protein
translations from GenBank coding sequences (“GenPept”)
are compared to the merged SWISS-PROT plus PIR.
Likewise, protein sequences from the Brookhaven
structure database (PDB) and other sources are
incorporated into NRDB. (The OWL nonredundant
sequence database® is constructed from the same sources.)
This simple procedure reduces the size of the combined
databases by 50%, yet ensures that all sequences are
represented. More sophisticated methods for creating

derived, composite views of protein and DNA sequence
data promise even further reductions™.

Another keyissueisaccessto the databases. Researchers
may perform database similarity searches remotely by
sending their queries, via electronic mail, to centralized
“server” computers, where large and frequently updated
databases are maintained, and where fast processors and
sophisticated software are available. E-mail services of
this sort have been available from various sources for
several years. For example, NCBI provides the BLAST e-
mail server (for more information, send a “help” message
to the Internet address blast@ncbi.nlm.nih.gov), and
EMBL provides Blitz (nethelp@embl-heidelberg.de).
Additional sites and services are given inref. 64. Inaddition
to databasesearch and retrieval services, such sites maintain
repositories of public domain software and specialized
datasets that may be accessed via “anonymous ftp” over
the Internet®®, The existence of high-performance networks
is also giving rise to a new generation of “client-server
applications” that make possible direct, real-time user
interactions with remote servers. NCBI’s BLAST network
service and Entrezretrieval system are two examples. For
users of the many excellent commercial software packages
for sequence analysis, we would anticipate the development
of network client-server capabilities in the near future.

Masking of low-complexity sequences

Interspersed local regions of very simple amino acid
composition are surprisingly abundant in protein
sequences”. Some of these regions are homopolymers or
short-period repeats, but mostare not periodicand appear
as mosaics of predominantly one or a few types of residue.
Their compositional bias is in marked contrast to the
structural domainsand motifs of globular proteins familiar
from crystal and NMR structures. Based on a relatively
stringent definition of low-complexity”’, more than half
of the sequences in the database contain at least one such
region, and 14% of the amino acids occur in clusters of
highly biased local composition. Moreover, a large excess
of “medium-complexity” regions may be defined usinga
less stringent definition of complexity: these are found in
many recently-deduced protein sequences that lack true
homologues and do not belong to the class of “ancient
conserved sequences”®®. Very little is known about the
molecularstructures, dynamics, interactionsand evolution
of most low- and medium-complexity protein segments.

«Fig. 3 The mouse protein Sos1 functions as a key intermediate in transmitting signals from receptor tyrosine kinases to ras via protein-protein interactions®.
Sos1 (PIR accession S21391) is a member of a family of ras guanine nucleotide-releasing proteins (GNRP) that aiso includes S. cerevisiae CDC25 and SDC2s, S.
pombe SteB, and the Drosophila gene, Son of seveniess®. Mouse Sos1 is a large, mosaic protein with several different domains, including a rasGNRP domain and
a low complexity region that binds to an “adapter” protein called Grb2%. &, Results of a BLASTP search using an Sos1 query sequence without any masking
applied. In addition to several “self hits” in the output, we see significant matches to some S. cerevisiae proteins, but Ste6 does not appear in the top 25 matches
despite its presence in the database (PIR International, release 37). Moreover, the true positive matches are interspersed with many false positives, consisting ofa
number of functionally unrelated proline-rich proteins. These artifactual matches are highly significant in the statistical sense, but a glance at some of the local
alignments shows that one is not justified in inferring similar function despite the high scores and low p-values. b, An identical search, except that in this case the
Sos1 query has been pre-processed using SEG masking with default parameters. Note that the top of the *hit list” is now populated only by bona fide members of
the rasGNRP family and that all artifactual matches against proline-rich proteins have disappeared. Furthermore, a match to S. pombe Ste6 is now obvious; a local
alignment between this protein and Sos1 is shown. Interestingly, Sos1 shows significant local similarities to histone H2A and B-spectrin {see below). ¢, Results of
another search with masking of both low complexity regions (b) and the rasGNRP domain. The top four matches now consist only of those proteins that share
more extensive, or global, similarity with the query beyond the rasGNRP domain. In this example, the additional information gained by this extra masking step is
not striking. But one can imagine the dramatic effect this would have in shrinking the “hit list” if the query possessed a kinase domain, of which there are hundreds
of examples in the database. (See ref. 74 for an example involving immunoglobulin domains). d, The query sequence, mouse Sost, annotated with the various
domains indentifiable by BLASTP searching. The rasGNRP domain is according to Boguski & McCormick®". The proline-rich carboxy terminal region is known to
interact with Src homology (SH3) domains in Grb2%2. With regard to the local similarities between Sos1 and histone H2A and B-spectrin, it has recently been shown
that Sos1, B-spectrin and a number of other proteins possess “pleckstrin homology” or PH domains®, The local alignment produced by BLASTP (¢) corresponds
to these PH domains. The similarity between Sos1 and histone H2A has not previously been reported and is difficult to interpret biologically. Nonetheiess, the
similarity is as significant as that of the PH domain and may have structural, as opposed to functional, implications®.
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Low-complexity segments confound database search
algorithms in two ways. First, most of these segments do
not generally give meaningful alignments position by
position inways that reflect actual structure and mutational
history: they evidently evolve relatively rapidly by processes
such as replication slippage and repeat expansion®. (At
the DNA sequence level, trinucleotide and dinucleotide
repeat polymorphisms provide a familiar example®7”.)
Permutations, shuffles or reversals of low-complexity
amino acid sequences generally give alignment scores
similar to the original sequence. Second, the residue
compositions of low-complexity segments are very
different from that of the database as a whole. This is
evident if all low-complexity segments in the database are
grouped into a single class: a strong excess of alanine,
glycine, proline, serine, glutamate and glutamine results.
However, this lumped class is itself heterogeneous,
containing for example glutamine-rich and proline-rich
subclasses. These statistical biases contrast with those that
characterize the bulk of most query and database
sequences, and on which score-based alignment statistics
are founded. Thus the high scores of alignments of low-
complexity segments are due primarily to their
compositional biases and do not necessarily reflect
significant positional similarity.

Several classes of low-complexity residue clusters have
been analysed for statistical significance by Karlin and
coworkers”'%, Their methods, which use the contrasting
residue frequencies of specific clusters and those of
complete proteins or databases, are embodied in the SAPS
software’. SEGY, the algorithm employed by the BLAST
programs for filtering low-complexity segments from
query sequences prior to database searching (Figs 2 and
3),employsinstead optimal segmentation methodsapplied
to a more general definition of compositional complexity
(see Box 2).

Masking of highly abundant sequences

Database searching can be performed efficientlyin phases,
with a query first compared to a small database containing
domains representative of large sequence families.
Subsequences of a query that match one or more of these
domains can then be masked prior to full-scale searching,
thereby eliminating most of the redundant output™.
Annotated collections of prototypic human repetitive
sequences’, such as Alu and protein kinase catalytic
domains™, exist and can be used to pre-filter a query (Fig
3¢). (Both of these data sets are available from the NCBI
Data Repository on CD-ROM and by anonymous ftp. See
/repbase/alu, /repbase/humrep and /pkinases/pkcdd.faat
ncbi.nlm.nih.gov.) For proteins, a more comprehensive
solution to the problem isapproached by buildingasmall,
representative set of protein superfamilies or motifs and
using this as a screening database with automatic masking
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of matching query subsequences (unpublished results).
This technology is still under development but recent
studies indicate that a representative set of only 1,000~
3,000 sequences may suffice®; such a database can be
searched in seconds. The first large-scale implementation
of this strategy has been performed for a specialized
database of “expressed sequence tags” or ESTs® where
such pre-filteringisalso employed to detect contamination
by vector sequences.

Conclusions

The stated goals of the U.S. Genome Project include the
production of 50 megabases of DNA sequence data per
year by 1998 and the identification and correlation of
genes in humans and model organisms”. Database
similarity searching will be one of the major informatics
tools used in this endeavor. Not only efficient algorithms,
but also a choice of appropriate scoring systems, well-
defined measures of statistical significance and a better
understanding of the sequences themselves, are critical
for the automated analysis schemes that this amount of
data will inevitably require.

Special purpose and faster general purpose computers
will have roles in sifting through this increasing volume of
sequence data. But large improvements in the efficiency
of searching can be obtained by considering the nature of
the data and implementing new strategies that capitalize
on this knowledge. One of these strategies is to preprocess
a query sequence to identify known domains and motifs,
dispersed repeats, low complexity segments and other
regions of compositional bias such as potential membrane-
spanning and o-helical coiled-coil regions. We have
described several preprocessing techniques thatare suitable
for automation and have demonstrated their practical
utility with examples. Foreknowledge of query features
enables one to perform faster and more effective searches
better and to evaluate search results.

Another, complementary strategy is to reduce the

redundancy in the target database(s) to be searched.
We have outlined one simple but useful approach to
the reductive merging of diverse, but overlapping,
source databases. But newer, cleaner and richer views
of the sequence data, optimized for gene discovery, are
on the horizon.
Note added in proof: NCBI has recently established a
GenBank® World Wide Web server (the URL is http:/
/www.ncbi.nlm.nih.gov) that provides network access
to many of the software tools and data sources described
in this review.

Acknowledgements
GenBank is a registered trademark of the U.S. Department of Health
and Human Services.

7. Karlin, S., Dembo, A. & Kawabata, T. Statistical composition of high-scoring
segments from molecular sequences. Ann. Stat. 18, 571-581 (1 990).

8. Dembo, A. & Karlin, S. Strong limit theorems of empirical functionals for large
exceedances of partial sums of i.i.d. variables. Ann. Prob. 19, 1737-1755
(1991).

9. Karlin, S. &Altschul, S.F. Applications and statistics for muitiple high-scoring
segments in moiecular sequences. Proc. natn. Acad. Sci. U.S.A. 80, 5873-
5877 (1993).

10. Smith, T.F., Waterman, M.S. & Burks, C. The statistical distribution of nucieic
acid similarities. Nucl. Acids Res. 13, 645-656 (1985).

11. Altschul, S.F. & Erickson, B.W. A nonlinear measure of subalignment
similarity and its significance levels. Bull. math. Biol. 48, 617-632 (1 986).

12. Collins, J.F., Coulson, A.F.W. & Lyall, A. Thesignificance of protein sequence
similarities. CABIOS 4, 67-71 (1988).

Nature Genetics volume 6 february 1994



I@ © 1994 Nature Publishing Group http://www.nature.com/naturegenetics

review

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.
27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39,

40.
41.
42,
43.

44.
45,
46.

47.
48.
49.
50.
51.

52.

. Mott, R. Maximum-iikelihood estimation of the statistical distribution of

Smith-Waterman local sequence similarity scores. Bull. math. Biol. 54, 59—
75 (19982).

. Altschui, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local

alignment search tool. J. molec. Biol. 215, 403-410 (1990).

. Needleman, 8.B. & Wunsch, C.D. A general method applicable to the search

for similarities in the amino acid sequences of two proteins. J. molec. Biol.
48, 443-453 (1970).

Sellers, P.H. On the theory and computation of evolutionary distances. SIAM
J. appl. Math. 26, 787-793 (1974).

Sankoff, D. & Kruskal, J.B. Time Warps, String Edits and Macromolecules:
The Theoryand Practice of Sequence Comparison (Addison-Wesley, Reading,
MA, 1983).

Smith, T.F. & Waterman, M.S. ldentification of common molecular
subsequences. J. molec. Biol. 147, 195-197 (1981).

Goad, W.B. & Kanehisa, M.1. Pattern recognition in nucleic acid sequences.
1. A general method for finding local homologies and symmetries. Nucl. Acids
Res. 10, 247-263 (1982).

Sellers, P.H. Pattern recognition in genetic sequences by mismatch density.
Bull. math. Biol. 48, 501-514 (1984).

Waterman, M.S. & Eggert, M. A new algorithm for best subsequence
alignments with applications to tRNA-rRNA comparisons. J. molec. Biol.
197, 723728 (1987).

Coulson, A.F.W., Collins, J.F. & Lyall, A. Protein and nucleic acid database
searching: a suitable case for parallel processing. Comp. J. 30, 420-424
(1987).

Chow, E.T., Hunkapiller, T., Peterson, J.C., Zimmerman, B.A. & Waterman,
M.S.inProc. 1991 Int. Conf. on Supercomputing, 216-223 (ACM Press, New
York, 1991).

Jones, R. Sequence pattern matching on a massively parallel
computer.CABIOS 8, 377-383 (1992).

Brutiag, D.L. et al. BLAZE: an implementation of the Smith-Waterman
sequence comparison algerithm on amassively parallel computer. Comput.
Chem. 17, 203-207 (1893).

Sturrock, S.S. & Collins, J.F. MPsrch version 1.3. (Biocomputing Research
Unit, University of Edinburgh, 1993).

Lipman, D.J. & Pearson, W.R. Rapid and sensitive protein similarity searches.
Science 227, 1435-1441 (1985).

Pearson, W.R. & Lipman, D.J. Improved tools for biological sequence
comparison. Proc. natn. Acad. Sci. U.S.A. 88, 24442448 (1988).

White, C.T. et al. in Proc. 1991 IEEE Int. Conf. Comp. Design: VLS! in
Computers and Processors, 504-508 (IEEE Comp. Soc. Press, Los Alamitos,
CA, 1991).

Pearson, W.R. Searching protein sequence libraries: comparison of the
sensitivity and selectivity of the Smith-Waterman and FASTA algorithms.
Genomics 11, 635-6560 (1991).

Altschul, S.F. & Lipman, D.J. Protein database searches for multiple
alignments. Proc. natn. Acad. Sci. U.S.A. 87, 55095513 (1990).

Argos, P. Asensitive procedure to compare amino acid sequences. J. molec.
Biol. 193, 385-396 (1987).

Vogt, G. &Argos, P. Searching for distantly related protein sequencesin large
databases by parallel processing on a transputer machine. CABIOS 8, 49—
55 (1992).

McLachlan, A.D. Tests for comparing reiated amino-acid sequences.
Cylochrome ¢ and cytochrome ¢,,,. J. mofec. Blol. 81, 408 424 {1 a71).
Dayhoff, M.O., Schwartz, R.M. & Orcutt, B.C. in Atlas of Protein Sequence
and Structurevol. 5, suppl. 3 (ed. M.O. Dayhoff} 345-352 (Natn. Biomed. Res.
Found., Washington, 1978).

Schwartz, R.M. & Dayhoff, M.O. in Atlas of Protein Sequence and Structure
vol. 5, suppl. 3 (ed. M.O. Dayhoff) 353-358 (Natn. Biomed. Res. Found.,
Washington, 1978).

Feng, D.F., Johnson, M.S. & Doolittle, R.F. Aligning amino acid sequences:
comparison of commonly used methods. J. molec. Eval. 21,112-125(1985).
Rao, J.K.M. New scoring matrix for amino acid residue exchanges based on
residue characteristic physical parameters. Int. J. peptide protein Res. 29,
276-281 (1987).

Risler,J.L., Delorme, M.O., Delacroix, H. & Henaut, A. Amino acid substitutions
instructurally refated proteins. A pattern recognition approach. Determination
of a new and efficient scoring matrix. J. molec. Biol. 204, 1019-1029 (1988).
Gonnet, G.H., Cohen, M.A. & Benner, S.A. Exhaustive matching of the entire
protein sequence database. Science 256, 1443-1445 (1992).

Henikoff, S. & Henikoff, J.G. Amino acid substitution matrices from protein
blocks. Proc. natn. Acad. Sci. U.S.A. 88, 10915-10918 (1992).

Jones, D.T., Taylor, W.R. & Thornton, J.M. The rapid generation of mutation
data matrices from protein sequences. CABIOS 8, 275-282 (1992).
Overington, J., Donnelly, D., Johnson, M.S., Sali, A. & Blundell, T.L.
Environment-specific amino acid substitution tables: tertiary templates and
prediction of protein folds. Prot. Sci. 1, 216-226 (1992).

Wilbur, W.J. On the PAM matrix model of protein evolution. Molec. Biol. Evol.
2, 434447 (1985).

Henikoff, S. & Henikoff, J.G. Performance evaluation of amino acid substitution
matrices. Proteins 17, 49-61 (1993).

Waterman, M.S., Gordon, L. & Arratia, R. Phase transitions in sequence
matches and nucleic acid structure. Proc. natn. Acad. Sci. U.S.A. 84, 1239
1243 (1987).

Fitch, W.M. & Smith, T.F. Optimal sequence afignments. Proc. natn. Acad.
Sci. U.S.A. 80, 1382-1386 (1983).

Gotoh, O. An improved algorithm for matching biological sequences. J.
molec. Biol. 162, 705-708 (1982).

Altschul, 8.F. & Erickson, B.W. Optimal sequence alignment using affine gap
costs. Bull. math. Biol. 48, 603-616 (1986).

Myers, EW. & Miller, W. Optimal alignments in linear space. CABIOS 4, 11—
17 (1988).

Miller, W. & Myers, EW. Sequence comparison with concave weighting
functions. Bull. math. Biol. 50, 97-120 (1988).

Pascarella, S. & Argos, P. Analysis of insertions/deletions in protein

Nature Genetics volume 6 february 1994

53.

54.
55.
56.
57.
58.

59.
80.

61.
62,

84.
65.
66.
67.

68.

69,

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.
a1.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94,

structures. J. molec. Biol. 224, 461-471 (1992).

Benner, S.A., Cohen, M.A. & Gonnet, G.H. Empirical and structural models
for ingertions and deletions in the divergent evolution of proteins. J. molec.
Biol. 229, 1065-1082 (1993).

Benson, D., Liprnan, D.J. & Ostell, J. GenBank. Nucl. Acids Res. 21, 2963-
2965 (1993).

Rice, C.M., Fuchs, R., Higgins, D.G., Stoehr, P.J. & Cameron, G.N. The
EMBI. data library. Nucl. Acids Res. 21, 2967-2971 (1993).

Barker, W.C., George, D.G., Mewes, H.-W., Pfeiffer, F. & Tsugita, A. The PIR-
International databases. Nucl. Acids Res. 21, 3089-3092 (1993).

Adams, M.D. et al. Complementary DNA sequencing: expressed sequence
tags and human genome project. Science 252, 1651-16566 (1991).

Sikela, J.M. & Auffray, C. Finding new genes faster than ever. Nature Genet.
3, 189-191 (1993).

Davies, K. The EST express gathers steam. Nature 364, 554 (1993).
Boguski, M.S., Lows, T.M.J. & Tolstoshev, C.M. dbEST — database for
“expressed sequence tags”. Nature Genet. 4, 332-333 (1993).

Bleasby, A.J. & Wootton, J.C. Construction of validated, non-redundant
composite sequence databases. Protein Eng. 3, 153~159 (1990).

Benson, D., Boguski, M., Lipman, D.J. & Ostell, J. The national center for
bictechnology information. Genomics 6, 389-391 (1990).

. Bairoch, A. & Boeckmann, B. The SWISS-PROT protein sequence data

bank, recent developments. Nucl. Acids Res. 21, 3093-3096 (1993).
Henikoff, S. Sequence analysis by electronic mail server. Trends biochem.
Sci. 18, 267-268 (1993).

Krol, E. The Whole Internet User’s Guide & Catalog. (O'Reilly & Assoc., Inc.,
Sebastopol, CA, 1992).

Network Entrez. NCBI News 2(2), 1 (National Library of Medicine, Bethesda,
MD, 1993).

Wootton, J.C. & Federhen, S. Statistics of local complexity in amino acid
sequences and sequence databases. Comput. Chem. 17, 149-163 (1 993).
Graen, P., Lipman, D., Hillier, L., Waterston, R., States, D.J. & Claverie, J.-
M. Ancient conserved regions in new gene seguences. Science 258, 1711-
1716 (1993).

Riggins, G.J. et al. Human genes containing polymorphic trinucleotide
repeats. Nature Genet. 2, 186-191 (1992).

Harding R.M., Boyce A.J. & Clegg, J.B. The evolution of tandemly repetitive
DNA: recombination rules. Genetics 132, 847-859 (1992).

Karlin, S. & Brendel, V. Charge configurations in viral proteins. Proc. natn.
Acad. Sci. U.S.A. 85, 9396-9400 (1988).

Karlin, S. & Brendel, V. Charge and statistical significance in protein and DNA
sequence analysis. Science 257, 39-49 (1992).

Brendel, V., Bucher, P., Nourbakhsh, |.R., Blaisdell, B.E. & Karlin, S. Methods
and algorithms for statistical analysis of protein sequences. Proc. natn.
Acad. Sci. U.S.A. 89, 2002-2006 (1992).

Claverie, J.-M. & States, D.J. Information enchancement methods for large
scale sequence analysis. Comput. Chem. 17, 191-201 (1993).

Jurka, J., Walichiewicz, J. & Milosavijevic, A. Prototypic sequences for
human repetitive DNA. J. molec. Evol. 35, 286-291 (1992).

Hanks, S.K. & Quinn, AM. Protein kinase catalytic domain sequence
database: identification of conserved features of primary structure and
classification of family members. Meth. Enzymol. 200, 38-62 (1991).
Colilins, F. & Galas, D. A new five-year plan for the U.S. hurman genome
project. Science 262, 43-46 (1993).

Gumbel, E.J. Statistics of extremes. {Columbia Univ. Press, New York,
1958).

Arratia, R., Gordon, L. & Waterman, M.S. An extreme value theory for
sequence matching. Ann. Stat. 14, 971-993 (1986).

Arratia, R., Morris, P. & Waterman, M.S. Stochastic scrabble: large deviations
for sequences with scores. J. appl. Prob. 25, 106-119 (1988).

Arratia, R. & Waterman, M.S. The Erdos-Renyi strong law for pattern match-
ing with a given proportion of mismatches. Ann. Prob. 17, 1152-1169 (1989).
Salamon, P. & Konopka, A.K. A maximum entropy principle for distribution
of local compilexity in naturally occurring nucleotide sequences. Comput.
Chem. 16, 117124 (1992).

Salamon, P., Wootton, J.C., Konopka, A.K. & Hansen, L. On the robustness
of maximum entropy relationships for complexity distributions of nucleotide
sequences. Comput. Chem. 17, 135-148 (1983).

Miyoshi, H. et al. The t(8:21) translocation in acute myeloid leukemia results
in production of an AML1-MTGS fusion transcript. EMBO J. 12, 2715-2721
(1993).

Kokubo, T., Gong. D-W., Roeder, R.G., Horikoshi, M. & Nakatani, Y. The
Drosophila 110-kDa TFIID subunit directly interacts with the N-terminai
region of the 230-kDa subunit. Proc. natn. Acad. Sci. U.S.A. 90, 5896-5900
(1993).

Hoey, T. et al. Molecular cloning and functional analysis of Drosophita
TAF110 reveal properties expected of coactivators. Cell 72, 247-260{1983).
Owens, G.P., Hahn, W.E. & Cohen, J.J. Identification of mRNAs associated
with programmed cell death in immature thymocytes. Mol. cell. Biol. 11,
4177-4188 (1991).

Schwabe, J.W., Neuhaus, D. & Rhodes, D. Solution structure of the DNA-
pinding domain of the oestrogen receptor. Nature 348, 458-461 (1990).
Felg, LA. The many roads that lsad to Ras. Science 260, 767—768 {1993).
McCormick, F. How receptors turn Ras on. Nature 383, 15-16 (1993).
Boguski, M.S. & McCormick, F. Proteins regulating Ras and its relatives.
Nature 366, 643~654 (1993).

Rozakis-Adcock, M., Ferntey, R., Wade, J., Pawson, T. & Bowtell, D. The
SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the
Ras activator mSos1. Nature 363, 83-85 (1993).

Musacchio, A., Gibson, T., Rice, P., Thompson, J. & Saraste, M. The PH
domain is a common piece in the structural patchwork of signalling {and
other) proteins. Trends biochem. Sci. 18, 343-348 (1 993).

Arents, G., Burlingame, R.W., Wang, B.C., Love, W.E. & Moudrianakis E.N.
The nucleosomal core histone octamer at 3.1 A resolution: atripartite protein
assembly and a left-handed superhelix. Proc. natn. Acad. Sci. U.S.A 88,
10148-10152 (1991).

129



