Interspersed repetitive sequences articles within Nature

Featured

  • Letter |

    The authors show that two primate-specific genes encoding KRAB domain containing zinc finger proteins, ZNF91 and ZNF93, have evolved during the last 25 million years to repress retrotransposon families that emerged during this time period; according to the new data KZNF gene expansion limits the activity of newly emerged retrotransposons, which subsequently mutate to evade repression.

    • Frank M. J. Jacobs
    • , David Greenberg
    •  & David Haussler
  • Letter |

    Studies have indicated an undefined role in DNA replication for CENP-B, a DNA binding protein associated with heterochromatin, centromeres and retrotransposon long terminal repeats (LTRs). Here it is shown that Sap1, which binds LTRs, promotes genomic instability when CENP-B activity is absent. CENP-B facilitates replication fork progression through LTRs in a way that protects against rearrangements.

    • Mikel Zaratiegui
    • , Matthew W. Vaughn
    •  & Robert A. Martienssen
  • News & Views |

    Mobile DNA sequences called L1 contribute to the brain's genetic heterogeneity and may affect neuron function. The protein MeCP2, which is mutated in Rett syndrome, seems to regulate the activity of these genomic elements. See Letter p.443

    • Lorenz Studer
  • Letter |

    Long interspersed nuclear elements-1 (L1) retrotransposons affect gene expression and neuronal function throughout brain development. These authors show that the absence of methyl-CpG-binding protein 2, a modulator of DNA methylation implicated in several neurodevelopmental disorders, increases L1 retrotransposon activity in rodent models, with this increase in susceptibility duplicated in patients with Rett syndrome. These correlations suggest that disease-related genetic mutations may influence L1 retrotransposon activity.

    • Alysson R. Muotri
    • , Maria C. N. Marchetto
    •  & Fred H. Gage
  • Letter |

    DNA replication occurs only once per cell cycle, and numerous pathways prevent re-replication. Here it is shown that mutations in ARABIDOPSIS TRITHORAX-RELATED PROTEIN5 (ATXR5) and ATXR6 — which encode histone methyltransferases — lead to re-replication of specific genomic locations, notably those corresponding to transposons and other repetitive and silenced elements. ATXR5 and ATXR6 are proposed to be components of a pathway that prevents over-replication of heterochromatin in Arabidopsis.

    • Yannick Jacob
    • , Hume Stroud
    •  & Steven E. Jacobsen
  • Letter |

    'Horizontal gene transfer' refers to the passage of genetic material between non-mating species. Transposable elements (transposons) may be especially prone to horizontal gene transfer, but the mechanisms by which they can spread across diverged species have been elusive. Here it is shown that transposons can spread by hitchhiking in the genomes of parasites. The amount of DNA that can be transferred in this way underscores the impact of horizontal gene transfer on genome evolution.

    • Clément Gilbert
    • , Sarah Schaack
    •  & Cédric Feschotte
  • Article
    | Open Access

    Fungi from the genus Fusarium are important pathogens of animals and crop plants. Some have a wide host range, whereas others are more specific in the organisms they infect. Here, clues are provided as to how differences in specificity come about. The genomes of two Fusarium fungi with differing host ranges have been sequenced, and compared with the genome of a third species. Experiments show that transferring two whole chromosomes turns a non-pathogenic Fusarium strain into a pathogenic one.

    • Li-Jun Ma
    • , H. Charlotte van der Does
    •  & Martijn Rep
  • Letter |

    Phenotypic robustness in the face of genetic and environmental perturbations — known as canalization — relies on buffering mechanisms. Hsp90 chaperone machinery has been proposed to be an evolutionarily conserved buffering mechanism of phenotypic variance. Here, an additional, perhaps alternative, mechanism whereby Hsp90 influences phenotypic variation is proposed; Hsp90 mutations can generate new variation by transposon-mediated mutagenesis.

    • Valeria Specchia
    • , Lucia Piacentini
    •  & Maria P. Bozzetti