Optical physics articles within Nature

Featured

  • Article |

    Boson sampling using ultracold atoms in a two-dimensional, tunnel-coupled optical lattice is enabled by high-fidelity programmable control with optical tweezers of a large number of atoms trapped in an optical lattice.

    • Aaron W. Young
    • , Shawn Geller
    •  & Adam M. Kaufman
  • Article
    | Open Access

    Electro-optical photonic integrated circuits based on lithium tantalate perform as well as current state-of-the-art ones using lithium niobate but the material has the advantage of existing commercial uses in consumer electronics, easing the problem of scalability.

    • Chengli Wang
    • , Zihan Li
    •  & Tobias J. Kippenberg
  • Article
    | Open Access

    Sea-based optical clocks combining a molecular iodine spectrometer, fibre frequency comb and electronics for monitoring and control demonstrate high precision in a smaller volume than active hydrogen masers.

    • Jonathan D. Roslund
    • , Arman Cingöz
    •  & Martin M. Boyd
  • Article
    | Open Access

    We introduce strong tailored light-wave-driven time-reversal symmetry breaking in monolayer hexagonal boron nitride, realizing a sub-laser-cycle controllable analogue of the topological model of Haldane and inducing non-resonant valley polarization.

    • Sambit Mitra
    • , Álvaro Jiménez-Galán
    •  & Shubhadeep Biswas
  • Article |

    An integrated device that combines optical parametric oscillation and electro-optic modulation in lithium niobate creates a flat-top frequency-comb-like output with low power requirements.

    • Hubert S. Stokowski
    • , Devin J. Dean
    •  & Amir H. Safavi-Naeini
  • Article
    | Open Access

    A miniaturized optical frequency division system that could transfer the generation of microwaves, with superior spectral purity, to a complementary metal-oxide-semiconductor-compatible integrated photonic platform is demonstrated showing potential for large-volume, low-cost manufacturing for many applications.

    • Shuman Sun
    • , Beichen Wang
    •  & Xu Yi
  • Article |

    Optical nanoscale disk memory with petabit-level capacity is developed by extending the recording architecture to three dimensions with hundreds of layers, and exabit-level storage can be achieved by stacking the disks into arrays.

    • Miao Zhao
    • , Jing Wen
    •  & Min Gu
  • Article
    | Open Access

    An experimental design consisting of a photonic-crystal nanoslab covered with upconversion nanoparticles demonstrates the phenomenon of supercritical coupling, resulting in giant enhancement of upconversion by photonic bound states in the continuum.

    • Chiara Schiattarella
    • , Silvia Romano
    •  & Gianluigi Zito
  • Article |

    Free-running stable optical dissipative solitons, called Nozaki–Bekki solitons, are created in a ring semiconductor laser; their spontaneous formation with tuning of laser bias eliminates the need for an external optical pump.

    • Nikola Opačak
    • , Dmitry Kazakov
    •  & Benedikt Schwarz
  • Article
    | Open Access

    Single-cycle terahertz pumps are used to impulsively trigger ionic hopping in battery solid electrolytes, probing ion transport at its fastest limit and demonstrating the connection between activated transport and the thermodynamics of information.

    • Andrey D. Poletayev
    • , Matthias C. Hoffmann
    •  & Aaron M. Lindenberg
  • Article
    | Open Access

    The Berry phase is resolved in light-driven crystals, via attosecond interferometry, in which the electronic wavefunction accumulates a geometric phase as it interacts with the laser field, mapping its coherence into the emission of high-order harmonics.

    • Ayelet J. Uzan-Narovlansky
    • , Lior Faeyrman
    •  & Nirit Dudovich
  • Article |

    The development of a 400,000-pixel superconducting nanowire single-photon detector array is described, improving the current state of the art by a factor of 400 and showing scalability well beyond the present demonstration.

    • B. G. Oripov
    • , D. S. Rampini
    •  & A. N. McCaughan
  • Article |

    A scalable nanophotonic electron accelerator with a high particle acceleration gradient and good beam confinement achieves an energy gain of 43%.

    • Tomáš Chlouba
    • , Roy Shiloh
    •  & Peter Hommelhoff
  • Article
    | Open Access

    Resonant X-ray excitation of the  45Sc nuclear isomeric state was achieved by irradiation of a Sc-metal foil with 12.4-keV photon pulses from a state-of-the-art X-ray free-electron laser, allowing a high-precision determination of the transition energy.

    • Yuri Shvyd’ko
    • , Ralf Röhlsberger
    •  & Tomasz Kolodziej
  • Article |

    In the layered magnetic semiconductor CrSBr, emergent light–matter hybrids (polaritons) increase the spectral bandwidth of correlations between the magnetic, electronic and optical properties, enabling largely tunable optical responses to applied magnetic fields and magnons.

    • Florian Dirnberger
    • , Jiamin Quan
    •  & Vinod M. Menon
  • Article
    | Open Access

    All-optical, mode-selective manipulation of the crystal lattice can be used to enhance and stabilize ferromagnetism in YTiO3 well above its equilibrium ordering temperature and for many nanoseconds, enabling dynamic engineering of practically useful non-equilibrium functionalities in fluctuating electronic systems.

    • A. S. Disa
    • , J. Curtis
    •  & A. Cavalleri
  • Article |

    Two-colour modulation spectroscopy of laser field-driven electrons uncovers the suboptical-cycle strong-field emission dynamics from nanostructures with attosecond precision by measuring photoelectron spectra of electrons as function of the relative phase between the two colours.

    • Philip Dienstbier
    • , Lennart Seiffert
    •  & Peter Hommelhoff
  • Article |

    Under strong excitation, inhomogeneously broadened solid-state emitters coupled with high cooperativity to a cavity demonstrate collectively induced transparency and dissipative many-body dynamics, resulting from cavity–ion coupling.

    • Mi Lei
    • , Rikuto Fukumori
    •  & Andrei Faraon
  • Article |

    The build-up and dephasing of Floquet-–Bloch bands is visualized in both subcycle band-structure videography and quantum theory, revealing the interplay of strong-field intraband and interband excitations in a non-equilibrium Floquet picture.

    • S. Ito
    • , M. Schüler
    •  & R. Huber
  • Article |

    By using new on-chip terahertz spectroscopy techniques to measure the absorption spectra of a graphene microribbon as well as the energy waves close to charge neutrality, hydrodynamic collective excitations are observed.

    • Wenyu Zhao
    • , Shaoxin Wang
    •  & Feng Wang
  • Article
    | Open Access

    By using sub-cycle light transients to induce optical field emission of electron pulses from tungsten nanotips and a weak replica of the same transient, investigation of attosecond emission dynamics in real time is demonstrated.

    • H. Y. Kim
    • , M. Garg
    •  & E. Goulielmakis
  • Article |

    A van der Waals crystal, niobium oxide dichloride, with vanishing interlayer electronic coupling and considerable monolayer-like excitonic behaviour in the bulk, as well as strong and scalable second-order optical nonlinearity, is discovered, which enables a high-performance quantum light source.

    • Qiangbing Guo
    • , Xiao-Zhuo Qi
    •  & Andrew T. S. Wee
  • Article |

    A study demonstrates full energy–momentum matching, and enhanced interaction, between free electrons and photons through a continuum of flatband resonances, realized in a silicon-on-insulator photonic crystal slab.

    • Yi Yang
    • , Charles Roques-Carmes
    •  & Marin Soljačić
  • Article |

    By using Si3N4 photonic integrated circuits on a silicon chip, a continuous-travelling-wave parametric amplifier is shown to yield a parametric gain exceeding both on-chip propagation loss as well as fibre–chip–fibre coupling losses.

    • Johann Riemensberger
    • , Nikolai Kuznetsov
    •  & Tobias J. Kippenberg
  • Article
    | Open Access

    A matter-wave interferometer is demonstrated with an interferometric phase noise below the standard quantum limit, combining two core concepts of quantum mechanics, that a particle can simultaneously be in two places at once and entanglement between distinct particles.

    • Graham P. Greve
    • , Chengyi Luo
    •  & James K. Thompson
  • Article |

    By forcing electron–hole pairs onto closed trajectories attosecond clocking of delocalized Bloch electrons is achieved, enabling greater understanding of unexpected phase transitions and quantum-dynamic phenomena.

    • J. Freudenstein
    • , M. Borsch
    •  & R. Huber
  • Article |

    By introducing a further modal dimension to transform a two-dimensional photonic waveguide array, a photonic topological insulator with protected topological surface states in three dimensions, enabled by a screw dislocation, is demonstrated.

    • Eran Lustig
    • , Lukas J. Maczewsky
    •  & Mordechai Segev
  • Article |

    Experiments show that the dynamics of phase fluctuations  in a one-dimensional polariton condensate falls in the Kardar–Parisi–Zhang universality class, and theoretical analysis supports this finding revealing the key signatures of this universality class.

    • Quentin Fontaine
    • , Davide Squizzato
    •  & Jacqueline Bloch
  • Article
    | Open Access

    Rabi dynamics between the ground state and an excited state in helium atoms are generated using femtosecond extreme-ultraviolet pulses from a seeded free-electron laser, which may allow ultrafast manipulation of coherent processes at short wavelengths.

    • Saikat Nandi
    • , Edvin Olofsson
    •  & Jan Marcus Dahlström
  • Article |

    This study demonstrates the experimental realization of a complete protocol for quantum key distribution using entangled trapped strontium ions with device-independent quantum security guarantees.

    • D. P. Nadlinger
    • , P. Drmota
    •  & J.-D. Bancal
  • Article
    | Open Access

    Gaussian boson sampling is performed on 216 squeezed modes entangled with three-dimensional connectivity5, using Borealis, registering events with up to 219 photons and a mean photon number of 125.

    • Lars S. Madsen
    • , Fabian Laudenbach
    •  & Jonathan Lavoie