Photonic devices articles within Nature

Featured

  • Analysis
    | Open Access

    Efficiency roll-off in a wide range of TADF OLEDs is analysed and a figure of merit proposed for materials design to improve efficiency at high brightness, potentially expanding the range of applications of TADF materials.

    • S. Diesing
    • , L. Zhang
    •  & I. D. W. Samuel
  • Article |

    A scalable nanophotonic electron accelerator with a high particle acceleration gradient and good beam confinement achieves an energy gain of 43%.

    • Tomáš Chlouba
    • , Roy Shiloh
    •  & Peter Hommelhoff
  • Article
    | Open Access

    We developed large-scale photonic-crystal surface-emitting lasers with controlled Hermitian and non-Hermitian couplings inside the photonic crystal and a pre-installed spatial distribution of the lattice constant, which leads to the realization of a continuous-wave brightness of 1 GW cm−2 sr−1.

    • Masahiro Yoshida
    • , Shumpei Katsuno
    •  & Susumu Noda
  • Article |

    Because open-circuit voltage deficit is greater in wide-bandgap perovskite solar cells, the authors introduce diammonium molecules to modify perovskite surface states and achieve a more uniform spatial distribution of surface potential, enabling record voltage all-perovskite tandem solar cells.

    • Hao Chen
    • , Aidan Maxwell
    •  & Edward H. Sargent
  • Article |

    Magnetically tunable three-dimensional photonic crystals are used to achieve the experimental demonstration of Chern vectors and their topological surface states, showing the Chern vector to be an intrinsic bulk topological invariant in three-dimensional topological materials.

    • Gui-Geng Liu
    • , Zhen Gao
    •  & Baile Zhang
  • Article |

    Individually addressable ‘T centre’ photon-spin qubits are integrated in silicon photonic structures and their spin-dependent telecommunications-band optical transitions characterized, creating opportunities to construct silicon-integrated, telecommunications-band quantum information networks.

    • Daniel B. Higginbottom
    • , Alexander T. K. Kurkjian
    •  & Stephanie Simmons
  • Article |

    Control loops generically produce braids of eigenfrequencies, and these braids form a non-Abelian group that reflects the non-trivial geometry of the space of degeneracies; these features are demonstrated experimentally using a cavity optomechanical system.

    • Yogesh S. S. Patil
    • , Judith Höller
    •  & Jack G. E. Harris
  • Article |

    Electrically controlled quantum confinement of excitons to below 10 nm is achieved in a 2D semiconductor by combining in-plane electric fields with interactions between excitons and free charges.

    • Deepankur Thureja
    • , Atac Imamoglu
    •  & Puneet A. Murthy
  • Article |

    A material design strategy and fabrication process is described to produce all-polymer light-emitting diodes with high brightness, current efficiency and good mechanical stability, with applications in skin electronics and human–machine interfaces.

    • Zhitao Zhang
    • , Weichen Wang
    •  & Zhenan Bao
  • Article |

    Nonlinearity induced by a single photon is desirable because it can drive power consumption of optical devices to their fundamental quantum limit, and is demonstrated here at room temperature.

    • Anton V. Zasedatelev
    • , Anton V. Baranikov
    •  & Pavlos G. Lagoudakis
  • Article |

    In a tiny chip-based particle accelerator, phase-space control of the emerging electron beam demonstrates guiding over a length of nearly 80 micrometres and an indispensable prerequisite to electron acceleration to high energies.

    • R. Shiloh
    • , J. Illmer
    •  & P. Hommelhoff
  • Article |

    A large electronic display textile that is flexible, breathable and withstands repeated machine-washing is integrated with a keyboard and power supply to create a wearable, durable communication tool.

    • Xiang Shi
    • , Yong Zuo
    •  & Huisheng Peng
  • Article |

    precisely controllable integrated optical gyroscope based on stimulated Brillouin scattering is used to study non-Hermitian physics, revealing a four-fold enhancement of the Sagnac scale factor near exceptional points.

    • Yu-Hung Lai
    • , Yu-Kun Lu
    •  & Kerry Vahala
  • Letter |

    A counter-intuitive state—known as a topological Anderson insulator—in which strong disorder leads to the formation of topologically protected rather than trivial states is realized in a photonic system.

    • Simon Stützer
    • , Yonatan Plotnik
    •  & Alexander Szameit
  • Letter |

    Photophoretic optical trapping of cellulose particles and persistence of vision are used to produce real-space volumetric images that can be viewed from all angles, in geometries unachievable by holograms and light-field technologies.

    • D. E. Smalley
    • , E. Nygaard
    •  & J. Peatross
  • Letter |

    The insertion of an insulating layer into a multilayer light-emitting diode (LED) based on quantum dots and produced by depositing the layers from solution increases the performance of the LEDs to levels comparable to those of state-of-the-art organic LEDs produced by vacuum deposition, while retaining the advantages of solution processing.

    • Xingliang Dai
    • , Zhenxing Zhang
    •  & Xiaogang Peng
  • Letter |

    An experimental demonstration of the concept of a ‘quantum access network’ based on simple and cost-effective telecommunication technologies yields a viable method for realizing multi-user quantum key distribution networks with efficient use of resources.

    • Bernd Fröhlich
    • , James F. Dynes
    •  & Andrew J. Shields
  • Letter |

    A continuous-wave Raman silicon laser with a photonic-crystal nanocavity less than ten micrometres in size and an unprecedentedly low lasing threshold of one microwatt is demonstrated, showing that the integration of all-silicon devices into photonic circuits may be possible.

    • Yasushi Takahashi
    • , Yoshitaka Inui
    •  & Susumu Noda