Optical spectroscopy articles within Nature Physics

Featured

  • Article
    | Open Access

    There is evidence that K3C60 can host a photo-induced superconducting state. Now, resonant excitation at low frequencies allows this phenomenon at room temperature and low pumping fluence.

    • E. Rowe
    • , B. Yuan
    •  & A. Cavalleri
  • Article
    | Open Access

    Ultrafast photon–electron spectroscopy commonly requires a driving laser. Now, an inverse approach based on cathodoluminescence spectroscopy has allowed a compact solution to spectral interferometry inside an electron microscope, without a laser.

    • Masoud Taleb
    • , Mario Hentschel
    •  & Nahid Talebi
  • Research Briefing |

    Coherent multidimensional spectroscopy with nanoscale spatial resolution was used to directly probe a plasmon polariton quantum wave packet. To reproduce these results an improved quantum model of photoemission was required, in which the coherent coupling between plasmons and electrons is accounted for with the plasmon excitations extending beyond a two-level model.

  • Letter |

    Plasmonics allows precise engineering of light–matter interactions and is the driver behind many optical devices. The local observation of a plasmonic quantum wave packet is a step towards bringing these functionalities to the quantum regime.

    • Sebastian Pres
    • , Bernhard Huber
    •  & Tobias Brixner
  • News & Views |

    Manipulating the chirality of electron vortices using attosecond metrology allows the clocking of continuum–continuum transitions, bringing the dream of time-resolved quantum physics a little closer.

    • Jean Marcel Ngoko Djiokap
  • Comment |

    Random lasers made out of disordered media have a rich but often unpredictable laser light emission, in all directions and over many frequencies. Strategies for taming random lasing are emerging, which have the potential to deliver programmable lasers with unprecedented properties.

    • Riccardo Sapienza
  • Letter |

    Stacking monolayer WS2 on top of bilayer WSe2 creates conditions where electrons and holes can coexist in the structure. Their Coulomb interaction allows them to form bound pairs and hence an excitonic insulator state.

    • Dongxue Chen
    • , Zhen Lian
    •  & Su-Fei Shi
  • Article
    | Open Access

    Evidence for light-induced superconductivity in K3C60 was limited to optical methods due to the short lifetime of the phase. Extending the lifetime from picoseconds to nanoseconds now allows measurement of its negligible electrical resistance.

    • M. Budden
    • , T. Gebert
    •  & A. Cavalleri
  • News & Views |

    Generating pure spin currents is a necessary part of many spintronic devices. Now there is a new mechanism for doing this, utilizing nuclear spin waves.

    • Claudia K. A. Mewes
  • Review Article |

    An overview of how electromagnetic radiation can be used for probing and modification of the magnetic order in antiferromagnets, and possible future research directions.

    • P. Němec
    • , M. Fiebig
    •  & A. V. Kimel
  • Letter |

    An atomic clock has been deployed on a field measurement campaign to determine the height of a mountain location 1,000 m above sea level, returning a value that is in good agreement with state-of-the-art geodesy.

    • Jacopo Grotti
    • , Silvio Koller
    •  & Davide Calonico
  • News & Views |

    A frequency comb technique used in NMR spectroscopy reveals the dynamics of the nuclear spin bath in self-assembled quantum dots.

    • Jeroen Elzerman
    •  & Mark Buitelaar
  • Letter |

    Coherent valley exciton dynamics are directly probed in a monolayer transition metal dichalcogenide, providing access to the valley coherence time and decoherence mechanisms — crucial for developing methods for manipulating the valley pseudospin.

    • Kai Hao
    • , Galan Moody
    •  & Xiaoqin Li
  • Research Highlights |

    • Luke Fleet
  • News & Views |

    Determining the sequence of events following photon absorption by a molecule can be a surprisingly challenging task. An innovative use of time-resolved X-ray spectroscopy has revealed an important insight into the ultrafast excited-state dynamics of a well-known inorganic chromophore.

    • James K. McCusker
  • Letter |

    Nanoscale metallic tips are a useful source of electrons for material characterization. It is now shown how terahertz radiation can provide precision control and enhancement of photoelectron emission from these sources. The approach can shape the spectrum of the electron pulse, which could pave the way to improvements in ultrafast electron diffraction and transmission electron microscopy.

    • L. Wimmer
    • , G. Herink
    •  & C. Ropers
  • News & Views |

    A combination of two Nobel ideas circumvents the trade-off between power and accuracy in ultraviolet spectroscopy.

    • Scott A. Diddams
  • Letter |

    Frequency combs provide a broad series of well-calibrated spectral lines for highly precise metrology and spectroscopy, but this usually involves a trade-off between power and accuracy. A comb created by adjusting the time delay between two optical pulses now enables both. This so-called Ramsey comb could probe fundamental problems such as determining the size of the proton.

    • Jonas Morgenweg
    • , Itan Barmes
    •  & Kjeld S. E. Eikema
  • Letter |

    Being able to sense nuclear spin dimers is an important next step towards single-molecule structural analysis from NMR measurements. Now the sensing of a single 13C–13C nuclear spin dimer near a nitrogen–vacancy centre in diamond is reported, together with a structural characterization at atomic-scale resolution.

    • Fazhan Shi
    • , Xi Kong
    •  & Jiangfeng Du
  • Letter |

    Ensembles of nuclear spins display thermal fluctuations—spin noise—that interfere with nuclear magnetic resonance measurements of samples below a threshold size. Experiments on nanowires show that by monitoring spin noise in real time and applying instantaneously adjusted radiofrequency pulses, spin polarization distributions that are narrower than the thermal distribution can be obtained.

    • P. Peddibhotla
    • , F. Xue
    •  & M. Poggio
  • News & Views |

    A technique for protecting out-of-equilibrium nuclear spin states from thermalization while offering a route to converting them into observable NMR signal is an important contribution to a field that welcomes every bit of extra signal.

    • Andreas Trabesinger
  • Letter |

    How and why Fermi arcs—disconnected segments of the Fermi surface—emerge in the pseudogap phase of cuprate superconductors is a mystery. A technique for analysing angle-resolved photoemission spectroscopy data that removes momentum broadening effects suggests these arcs do not reflect true Fermi surface states, which would explain why they do not form continuous loops.

    • T. J. Reber
    • , N. C. Plumb
    •  & D. S. Dessau