Superconducting devices articles within Nature Physics

Featured

  • Article
    | Open Access

    Leggett modes can occur when superconductivity arises in more than one band in a material and represent oscillation of the relative phases of the two superconducting condensates. Now, this mode is observed in Cd3As2, a Dirac semimetal.

    • Joseph J. Cuozzo
    • , W. Yu
    •  & Enrico Rossi
  • News & Views |

    Electrons trapped above the surface of solid neon can be used to create qubits using spatial states with different charge distributions. These charge qubits combine direct electric field control with long coherence times.

    • Atsushi Noguchi
  • News & Views |

    Chains of coupled superconducting islands known as Josephson junction arrays were predicted to be insulating at high impedance, but superconducting behaviour has been observed. A study of the arrays’ transport suggests thermal effects are responsible.

    • Dmitri V. Averin
  • Article |

    Achieving low decoherence is challenging in hybrid quantum systems. A superconducting-circuit-based optomechanical platform realizes millisecond-scale quantum state lifetime, which allows tracking of the free evolution of a squeezed mechanical state.

    • Amir Youssefi
    • , Shingo Kono
    •  & Tobias J. Kippenberg
  • Article |

    The behaviour of a superconductor can be altered by changing its symmetry properties. Coherently coupling two Josephson junctions breaks time-reversal and inversion symmetries, giving rise to a device with a controllable superconducting diode effect.

    • Sadashige Matsuo
    • , Takaya Imoto
    •  & Seigo Tarucha
  • Article |

    It has been predicted that Josephson junction devices could produce quantized currents in analogy to the Shapiro steps of voltage used to define the voltage standard. These dual Shapiro steps have now been observed in a Josephson junction array.

    • Nicolò Crescini
    • , Samuel Cailleaux
    •  & Nicolas Roch
  • News & Views |

    ‘Squeezing’ of light can be used to alter the distribution of quantum noise to benefit quantum sensing and other applications. An improved design for a microwave photon squeezer provides high performance over a large bandwidth.

    • Baleegh Abdo
  • News & Views |

    The magnetic flux in a superconducting loop can only change by discrete jumps called phase slips. The energy dissipated by an individual phase slip has now been detected thanks to advances in precision temperature measurements.

    • José Aumentado
  • Article |

    Superconducting currents around a loop containing a weak link can be quantized and only change during discrete events called phase slips. Now, the heat generated by a single phase slip and the subsequent relaxation have been experimentally observed.

    • E. Gümüş
    • , D. Majidi
    •  & C. B. Winkelmann
  • News & Views |

    Using a quantum annealer to simulate the dynamics of phase transitions shows that superconducting quantum devices can coherently evolve systems of thousands of individual elements. This is an important step toward quantum simulation and optimization.

    • David Bernal Neira
  • Letter |

    Heat transport in electronic systems is influenced by nearby superconductors due to the so-called proximity effect. Combining this with the manipulation of superconductivity using magnetic fields enables the control of nanoscale thermal transport.

    • Nadia Ligato
    • , Federico Paolucci
    •  & Francesco Giazotto
  • News & Views |

    Photon emission is a major source of decoherence for several quantum technologies. Four superconducting qubits have been combined to create a ‘dark state’ qubit with strongly suppressed photon emission due to collective interference effects.

    • Stuart J. Masson
    •  & Ana Asenjo-Garcia
  • News & Views |

    Superconducting devices ubiquitously have an excess of broken Cooper pairs, which can hamper their performance. It is widely believed that external radiation is responsible but a study now suggests there must be an additional, unknown source.

    • Andrew P. Higginbotham
  • Letter |

    The performance of superconducting devices can be degraded by quasiparticle generation mechanisms that are difficult to identify and eliminate. Now, a small superconducting island can be kept quasiparticle free for seconds at a time.

    • E. T. Mannila
    • , P. Samuelsson
    •  & J. P. Pekola
  • News & Views |

    The reliability of quantum computers depends on the correction of noise-induced errors, which requires additional resources. Experiments on superconducting qubits have now demonstrated the capabilities of a less-demanding scheme for error detection.

    • Morten Kjaergaard
  • Article |

    Large-scale quantum computers will manipulate quantum information encoded in error-corrected logical qubits. A complete set of operations has now been realized on a logical qubit with error detection.

    • J. F. Marques
    • , B. M. Varbanov
    •  & L. DiCarlo
  • News & Views |

    A Cooper-pair box qubit is used to squeeze the energy of a heavy oscillating membrane towards a quantum energy eigenstate, bringing measurements of how mass and quantum mechanics interact one step closer.

    • Mario Gely
    •  & Gary A. Steele
  • Article |

    Analogous to the radiation-pressure coupling known in optomechanics, photon-pressure interaction between superconducting circuits can reach the strong coupling regime, which allows flexible control of the electromagnetic resonator’s quantum state.

    • D. Bothner
    • , I. C. Rodrigues
    •  & G. A. Steele
  • Letter |

    A quasiparticle in Andreev levels was coupled to a superconducting microwave resonator and its spin was monitored in real time. This has potential applications in the readout of superconducting spin qubits and measurements of Majorana fermions.

    • M. Hays
    • , V. Fatemi
    •  & M. H. Devoret
  • News & Views |

    Qubits cannot exist without nonlinearity, but nonlinear elements in superconducting circuits lead to losses. A superconducting qubit has now been realized by nonlinearly coupling two microwave resonators, offering the promise of long coherence times.

    • Gerhard Kirchmair
  • Article |

    A flux-tunable inductive coupling between two microwave superconducting resonators allows the operation of one of them as a two-level system. The lifetime is limited by the oscillator’s quality factor, offering potential for highly coherent qubits.

    • Andrei Vrajitoarea
    • , Ziwen Huang
    •  & Andrew A. Houck
  • Editorial |

    The demonstration of a quantum computational advantage is a milestone worth celebrating.

  • News & Views |

    Non-Hermitian systems with gain and loss give rise to exceptional points with exceptional properties. An experiment with superconducting qubits now offers a first step towards studying these singularities in the quantum domain.

    • Stefan Rotter
  • Letter |

    By coupling a superconducting qubit to surface acoustic waves the ‘giant atom’ regime is realized, where an atom is coupled to a field with wavelength orders of magnitude smaller than the atomic size. This leads to non-Markovian qubit dynamics.

    • Gustav Andersson
    • , Baladitya Suri
    •  & Per Delsing
  • Measure for Measure |

    Superconducting quantum interference devices can accurately measure temperatures even below 1 mK, but there’s more to them — as Thomas Schurig explains.

    • Thomas Schurig
  • News & Views |

    The superconductor–insulator phase transition is a quantum phenomenon that reveals a competition between the superconducting phase order and charge localization. Now, microwave spectroscopy is shown to be a promising approach to investigate this effect in controllable one-dimensional Josephson arrays.

    • Alexander D. Mirlin
    •  & Ivan V. Protopopov
  • News & Views |

    A theoretical analysis of exotic superconductors suggests that it is possible to manipulate the state of their order parameter with light. This will help engineer devices from topological superconductors by patterning regions with different orders.

    • Ivar Martin
  • Letter |

    The measured change in the fundamental frequency of a superconducting resonator coupled to a tunnel junction reveals a broadband constant Lamb shift, which is typically inaccessible in atomic systems.

    • Matti Silveri
    • , Shumpei Masuda
    •  & Mikko Möttönen
  • News & Views |

    Energy levels in superconducting quantum devices are highly sensitive to charge fluctuations. Generally, this is considered a bug, but new work transforms this sensitivity into the defining feature of a novel device.

    • Leonid Glazman
  • Article |

    The charge–phase duality in superconductors implies that the well-known SQUID has an analogue based on the interference of fluxons. Such a ‘charge quantum interference device’ (or CQUID) has now been experimentally demonstrated.

    • S. E. de Graaf
    • , S. T. Skacel
    •  & O. V. Astafiev
  • News & Views |

    Quantized Majorana conductance is a hallmark of topological superconductors, but its fragility has made it difficult to observe. Device improvements have now enabled its measurement, making everyone eager to see the next step — topological qubits.

    • Marcel Franz
    •  & Dmitry I. Pikulin
  • Letter |

    Semiconductor nanowires with superconducting leads are considered promising for quantum computation. The current–phase relation is systematically explored in gate-tunable InAs Josephson junctions, and is shown to provide a clean handle for characterizing the transport properties of these structures.

    • Eric M. Spanton
    • , Mingtang Deng
    •  & Kathryn A. Moler
  • Article |

    The ability to transfer quantum information from a memory to a flying qubit is important for building quantum networks. The very fast release of a multiphoton state in a microwave cavity memory into propagating modes is demonstrated.

    • Wolfgang Pfaff
    • , Christopher J. Axline
    •  & Robert J. Schoelkopf