Techniques and instrumentation articles within Nature

Featured

  • Article |

    Enhanced light–molecule interactions in high-finesse fibre-based Fabry–Pérot microcavities are used to detect and profile individual unlabelled solution-phase biomolecules, leading to potential applications in the life and chemical sciences.

    • Lisa-Maria Needham
    • , Carlos Saavedra
    •  & Randall H. Goldsmith
  • Article
    | Open Access

    We introduce a scalable, high-resolution, 3D printing technique for the fabrication of shape-specific particles based on roll-to-roll continuous liquid interface production, enabling direct integration within biomedical, analytical and advanced materials applications.

    • Jason M. Kronenfeld
    • , Lukas Rother
    •  & Joseph M. DeSimone
  • Article |

    A quasi-true time delay is demonstrated for a microwave device implemented in a CMOS technology to miniaturize true-time-delay components of beam-steering systems, addressing the fundamental channel-capacity limitations and increasing data transmission in wireless communications.

    • Bala Govind
    • , Thomas Tapen
    •  & Alyssa Apsel
  • Article
    | Open Access

    We demonstrate a photon-counting approach that extends the unique advantages of spectroscopy with interfering frequency combs into regions where nonlinear frequency conversion tends to be very inefficient, providing a step towards precision broadband spectroscopy at short wavelengths and extreme-ultraviolet dual-comb spectroscopy.

    • Bingxin Xu
    • , Zaijun Chen
    •  & Nathalie Picqué
  • Article |

    A plasma set-up consisting of a pair of carbon-fibre-tip-enhanced electrodes enables the generation of a uniform, ultra-high temperature and stable plasma (up to 8,000  K) at atmospheric pressure using a combination of vertically oriented long and short carbon fibres.

    • Hua Xie
    • , Ning Liu
    •  & Liangbing Hu
  • Article
    | Open Access

    An autonomous laboratory, the A-Lab, is presented that combines computations, literature data, machine learning and active learning, which discovered and synthesized 41 novel compounds from a set of 58 targets after 17 days of operation.

    • Nathan J. Szymanski
    • , Bernardus Rendy
    •  & Gerbrand Ceder
  • Article |

    A high-throughput, non-contact framework is described that uses the laser-induced vibrational signatures of metamaterials to non-destructively quantify their omnidirectional elastic information, dynamic linear properties, damping properties and defects.

    • Yun Kai
    • , Somayajulu Dhulipala
    •  & Carlos M. Portela
  • Article |

    In situ liquid-cell electrochemical transmission electron microscopy allows the direct visualization of the transformation of lithium polysulfides over electrode surfaces at the atomic scale, leading to a new energy-storage mechanism in lithium–sulfur batteries.

    • Shiyuan Zhou
    • , Jie Shi
    •  & Hong-Gang Liao
  • Article |

    Spectroscopic measurements of individual rare-earth ion electron spins are performed by detecting their microwave fluorescence, with the method coming close to practical single-electron spin resonance at millikelvin temperatures.

    • Z. Wang
    • , L. Balembois
    •  & E. Flurin
  • Article |

    Using a specialized tip as a detector, the fingerprints of a single atom of iron and terbium are observed in synchrotron X-ray absorption spectra, allowing elemental and chemical characterization one atom at a time.

    • Tolulope M. Ajayi
    • , Nozomi Shirato
    •  & Saw-Wai Hla
  • Article
    | Open Access

    The authors introduce a single-molecule DNA-barcoding method, resolution enhancement by sequential imaging, that improves the resolution of fluorescence microscopy down to the Ångström scale using off-the-shelf fluorescence microscopy hardware and reagents.

    • Susanne C. M. Reinhardt
    • , Luciano A. Masullo
    •  & Ralf Jungmann
  • Article |

    The authors report on the radiative decay of a low-energy isomer in thorium-229 (229mTh), which has consequences for the design of a future nuclear clock and eases the search for direct laser excitation of the atomic nucleus.

    • Sandro Kraemer
    • , Janni Moens
    •  & Ulrich Wahl
  • Article
    | Open Access

    The authors develop a new oxide-dispersion-strengthened NiCoCr-based alloy using a model-driven alloy design approach and laser-based additive manufacturing, showing how such designs can provide superior compositions using far fewer resources than previous methods.

    • Timothy M. Smith
    • , Christopher A. Kantzos
    •  & John W. Lawson
  • Article
    | Open Access

    A single-element ferroelectric state is observed in a black phosphorus-like bismuth layer, in which the ordered charge transfer and the regular atom distortion between sublattices happen simultaneously and ferroelectric switching is further visualized experimentally.

    • Jian Gou
    • , Hua Bai
    •  & Andrew Thye Shen Wee
  • Article |

    Tracking the formation of cubic ice (ice Ic) using transmission electron microscopy and low-dose imaging shows preferential nucleation of ice Ic at low-temperature interfaces and two types of stacking disorder.

    • Xudan Huang
    • , Lifen Wang
    •  & Xuedong Bai
  • Article |

    Self-limited assembly of 'imperfect' chiral nanoparticles enables formation of bowtie-shaped microparticles with size monodispersity and continuously variable chirality to be used for printing photonically active metasurfaces.

    • Prashant Kumar
    • , Thi Vo
    •  & Nicholas A. Kotov
  • Article |

    A quantum twisting microscope based on a unique van der Waals tip and capable of performing local interference experiments opens the way for new classes of experiments on quantum materials.

    • A. Inbar
    • , J. Birkbeck
    •  & S. Ilani
  • Article
    | Open Access

    Nanoscale magnetic fluctuations are spatiotemporally resolved beyond conventional resolution limits using coherent correlation imaging, in which frames in Fourier space are recorded and analysed using an iterative hierarchical clustering algorithm.

    • Christopher Klose
    • , Felix Büttner
    •  & Bastian Pfau
  • Article |

    An additive manufacturing technique that infuses 3D printed hydrogels with metallic precursors leads to metallic micromaterials, providing new opportunities for the fabrication of energy materials, micro-electromechanical systems and biomedical devices.

    • Max A. Saccone
    • , Rebecca A. Gallivan
    •  & Julia R. Greer
  • Article
    | Open Access

    A meta-imaging sensor detects an extra-fine 4D light field distribution using a vibrating microlens array, enabling high-resolution 3D photography up to a gigapixel with fast aberration correction, demonstrated on a telescope aimed at the Moon.

    • Jiamin Wu
    • , Yuduo Guo
    •  & Qionghai Dai
  • Article
    | Open Access

    Stochastic cooling at optical frequencies is demonstrated in an experiment at the Fermi National Accelerator Laboratory’s Integrable Optics Test Accelerator, substantially increasing the bandwidth of stochastic cooling compared with conventional systems.

    • J. Jarvis
    • , V. Lebedev
    •  & A. Valishev
  • Article |

    The ability to resolve single atoms in a liquid environment is demonstrated by combining a transmission electron microscope and a robust double graphene liquid cell, enabling studies of adatom motion at solid–liquid interfaces.

    • Nick Clark
    • , Daniel J. Kelly
    •  & Sarah J. Haigh
  • Article |

    Using integrated differential phase contrast scanning transmission electron microscopy, the atomic imaging of single pyridine and thiophene molecules identifies host–guest interactions in zeolite ZSM-5 and their adsorption and desorption behaviours can be studied.

    • Boyuan Shen
    • , Huiqiu Wang
    •  & Fei Wei
  • Article
    | Open Access

    A method for mapping phonon momenta reveals non-equilibrium phonon dynamics at nanoscale interfaces enabling study of actual nanodevices and aiding understanding of heat dissipation near nanoscale hotspots.

    • Chaitanya A. Gadre
    • , Xingxu Yan
    •  & Xiaoqing Pan
  • Article |

    Three tunable quantum Hall broken-symmetry states in charge-neutral graphene are identified by visualizing their lattice-scale order with scanning tunnelling microscopy and spectroscopy.

    • Alexis Coissard
    • , David Wander
    •  & Benjamin Sacépé
  • Article
    | Open Access

    Using data gathered from the microphones of the Perseverance rover, the first characterization of the acoustic environment on Mars is presented, showing two distinct values for the speed of sound in CO2-dominated atmosphere.

    • S. Maurice
    • , B. Chide
    •  & P. Willis
  • Article |

    In situ scanning tunnelling microscopy reveals the dynamic nature of the early stages of two-dimensional (2D) polymer formation and crystallization at the solid–liquid interface.

    • Gaolei Zhan
    • , Zhen-Feng Cai
    •  & Steven De Feyter
  • Article |

    A metastable palladium hydride is synthesized where the unique environment in the liquid cell, namely the limited quantity of Pd precursors and the continuous supply of H, resulted in the formation of the hcp phase.

    • Jaeyoung Hong
    • , Jee-Hwan Bae
    •  & Dong Won Chun
  • Article |

    Multiple ultracold ensembles of strontium atoms are trapped in the same optical lattice, realizing a multiplexed optical clock where precision measurements can benefit from having all atoms share the same trapping light and clock laser.

    • Xin Zheng
    • , Jonathan Dolde
    •  & Shimon Kolkowitz
  • Article
    | Open Access

    The vibrational states emerging at the interface in oxide superlattices are characterized theoretically and at atomic resolution, showing the impact of material length scales on structure and vibrational response.

    • Eric R. Hoglund
    • , De-Liang Bao
    •  & James M. Howe
  • Article
    | Open Access

    Small-molecule serial femtosecond X-ray crystallography (smSFX) characterizes microcrystals by indexing sparse serial XFEL diffraction frames, with little sample preparation, without beam damage, and at room temperature and pressure.

    • Elyse A. Schriber
    • , Daniel W. Paley
    •  & J. Nathan Hohman
  • Article |

    Four-dimensional electron energy-loss spectroscopy measurements of the vibrational spectra and the phonon dispersion at a heterointerface show localized modes that are predicted to affect the thermal conductance and electron mobility.

    • Ruishi Qi
    • , Ruochen Shi
    •  & Peng Gao
  • Article |

    So far, only indirect evidence of Wigner crystals has been reported, but a specially designed scanning tunnelling microscope is used here to directly image them in a moiré heterostructure.

    • Hongyuan Li
    • , Shaowei Li
    •  & Feng Wang
  • Article |

    Optical imaging of single-molecule electrochemical reactions in aqueous solution enables super-resolution electrochemiluminescence microscopy, which can be used to monitor the adhesion dynamics of live cells with high spatiotemporal resolution.

    • Jinrun Dong
    • , Yuxian Lu
    •  & Jiandong Feng