Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A unified framework for global auroral morphologies of different planets

Abstract

Planetary magnetic fields control energetic particles in their space environments and guide particles to polar atmospheres, where they produce stunning auroral forms. As revealed by spacecraft measurements of the Earth, Saturn and Jupiter, the pathways of energetic particles to these planetary polar atmospheres are diverse, suggesting that there are different coupling processes between their ionospheres and magnetospheres. These planets all have dipole-dominated magnetic fields, rotate in the same direction and are blown by the solar wind, but what controls the global-scale patterns of energy dissipation remains unknown. Based on three-dimensional magnetohydrodynamics calculations, we reveal that the competition between planet-driven plasma rotation and solar-wind-driven flow convection determines the structure of global auroral morphologies. This unified theoretical framework can reproduce polar aurora from the Earth-type to the Jupiter-type based on transition states that are strikingly consistent with the highly variable aurora patterns of Saturn. This generalized description of fundamental magnetospheric physics, proposed here and validated by decades-long observations, is applicable to exoplanetary systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Variable Sun–planet magnetosphere interactions.
Fig. 2: Magnetosphere–ionosphere connection.
Fig. 3: Variation of the simulated Alfvénic oval as a function of RΦ.

Similar content being viewed by others

Data availability

The IMAGE FUV/WIC data, the UDF software for IMAGE data installation and FUVIEW3 for display were obtained from http://sprg.ssl.berkeley.edu/image/. The Hubble Space Telescope observations of Saturn’s aurorae were obtained from https://archive.stsci.edu/hst/search.php, and the Jovian auroral image is archived in NASA’s Planetary Data System (http://pds-atmospheres.nmsu.edu/data_and_services/atmospheres_data/JUNO/juno.html).

Code availability

The simulation data and source code are available upon request.

References

  1. Jones, C. A. Planetary magnetic fields and fluid dynamos. Annu. Rev. Fluid Mech. 43, 583–614 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  2. Hallinan, G. et al. Magnetospherically driven optical and radio aurorae at the end of the stellar main sequence. Nature 523, 568–571 (2015).

    Article  ADS  Google Scholar 

  3. Kao, M. M., Hallinan, G., Pineda, J. S., Stevenson, D. & Burgasser, A. The strongest magnetic fields on the coolest brown dwarfs. Astrophys. J. Suppl. Ser. 237, 25 (2018).

    Article  ADS  Google Scholar 

  4. Stevenson, D. J. Interiors of the giant planets. Annu. Rev. Earth Planet. Sci. 10, 257 (1982).

    Article  ADS  Google Scholar 

  5. Stevenson, D. J. Planetary magnetic fields. Earth Planet. Sci. Lett. 208, 1–11 (2003).

    Article  ADS  Google Scholar 

  6. Guillot, T. The interiors of giant planets: models and outstanding questions. Annu. Rev. Earth Planet. Sci. 33, 493–530 (2005).

    Article  ADS  Google Scholar 

  7. Schubert, G. & Soderlund, K. M. Planetary magnetic fields: observations and models. Phys. Earth Planet. Inter. 187, 92–108 (2011).

    Article  ADS  Google Scholar 

  8. Liu, S., Kong, D. & Yan, J. Possible approach to detecting the mysterious Saturnian convective dynamo through gravitational sounding. Astron. Astrophys. 644, A48 (2020).

    Article  ADS  Google Scholar 

  9. Boakes, P. D. et al. On the use of IMAGE FUV for estimating the latitude of the open/closed magnetic field line boundary in the ionosphere. Ann. Geophys. 26, 2759–2769 (2008).

    Article  ADS  Google Scholar 

  10. Imber, S. M., Milan, S. E. & Hubert, B. The auroral and ionospheric flow signatures of dual lobe reconnection. Ann. Geophys. 24, 3115–3129 (2006).

    Article  ADS  Google Scholar 

  11. Fear, R. C. & Milan, S. E. The IMF dependence of the local time of transpolar arcs: implications for formation mechanism. J. Geophys. Res.: Space Phys. https://doi.org/10.1029/2011JA017209 (2012).

  12. Milan, S. E., Lester, M., Cowley, S. W. H. & Brittnacher, M. Dayside convection and auroral morphology during an interval of northward interplanetary magnetic field. Ann. Geophys. 18, 436–444 (2000).

    Article  ADS  Google Scholar 

  13. Milan, S. E., Provan, G. & Hubert, B. Magnetic flux transport in the Dungey cycle: a survey of dayside and nightside reconnection rates. J. Geophys. Res.: Space Phys. https://doi.org/10.1029/2006JA011642 (2007).

  14. Wing, S., Gkioulidou, M., Johnson, J. R., Newell, P. T. & Wang, C.-P. Auroral particle precipitation characterized by the substorm cycle. J. Geophys. Res.: Space Phys. 118, 1022–1039 (2013).

    Article  ADS  Google Scholar 

  15. Hardy, D. A., Gussenhoven, M. S. & Holeman, E. A statistical model of auroral electron precipitation. J. Geophys. Res.: Space Phys. 90, 4229–4248 (1985).

    Article  ADS  Google Scholar 

  16. Sandel, B. R. & Broadfoot, A. L. Morphology of Saturn’s aurora. Nature 292, 679–682 (1981).

    Article  ADS  Google Scholar 

  17. Clarke, J. T. et al. in Jupiter. The Planet, Satellites and Magnetosphere, Vol. 1 (eds Bagenal, F. et al.) 639–670 (Cambridge Univ. Press, 2004).

  18. Eather, R. H. & Mende, S. B. Airborne observations of auroral precipitation patterns. J. Geophys. Res. 76, 1746–1755 (1971).

    Article  ADS  Google Scholar 

  19. Eather, R. H. Auroral proton precipitation and hydrogen emissions. Rev. Geophys. 5, 207–285 (1967).

    Article  ADS  Google Scholar 

  20. Gérard, J.-C. et al. Saturn’s auroral morphology and activity during quiet magnetospheric conditions. J. Geophys. Res.: Space Phys. 111, A12210 (2006).

    Article  ADS  Google Scholar 

  21. Grodent, D., Gérard, J.-C., Cowley, S. W. H., Bunce, E. J. & Clarke, J. T. Variable morphology of Saturn’s southern ultraviolet aurora. J. Geophys. Res.: Space Phys. 110, A07215 (2005).

    Article  ADS  Google Scholar 

  22. Carbary, J. F. The morphology of Saturn’s ultraviolet aurora. J. Geophys. Res.: Space Phys. 117, A06210 (2012).

    Article  ADS  Google Scholar 

  23. Clarke, J. T. in Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets (eds Keiling, A. et al.) 113–122 (AGU, 2012).

  24. Greathouse, T. et al. Local time dependence of Jupiter’s polar auroral emissions observed by Juno UVS. J. Geophys. Res.: Planets 126, e2021JE006954 (2021).

    Article  ADS  Google Scholar 

  25. Sulaiman, A. H. et al. Jupiter’s low-altitude auroral zones: fields, particles, plasma waves, and density depletions. J. Geophys. Res.: Space Phys. 127, e2022JA030334 (2022).

    Article  ADS  Google Scholar 

  26. Hill, T. W. in Solar-Terrestrial Physics: Principles and Theoretical Foundations (eds R. L. Carovillano & J. M. Forbes) 261–302 (Springer, 1983).

  27. Borovsky, J. E. The rudiments of a theory of solar wind/magnetosphere coupling derived from first principles. J. Geophys. Res.: Space Phys. https://doi.org/10.1029/2007JA012646 (2008).

  28. Isbell, J., Dessler, A. J. & Waite, J. H. Jr. Magnetospheric energization by interaction between planetary spin and the solar wind. J. Geophys. Res.: Space Phys. 89, 10716–10722 (1984).

    Article  ADS  Google Scholar 

  29. Chappell, C. R., Moore, T. E. & Waite, J. H. Jr The ionosphere as a fully adequate source of plasma for the Earth’s magnetosphere. J. Geophys. Res.: Space Phys. 92, 5896–5910 (1987).

    Article  ADS  Google Scholar 

  30. Delamere, P. A. et al. Solar wind and internally driven dynamics: influences on magnetodiscs and auroral responses. Space Sci. Rev. 187, 51–97 (2015).

    Article  ADS  Google Scholar 

  31. Russell, C. T. The solar wind interaction with the Earth’s magnetosphere: a tutorial. IEEE Trans. Plasma Sci. 28, 1818–1830 (2000).

    Article  ADS  Google Scholar 

  32. McComas, D. J. & Bagenal, F. Jupiter: a fundamentally different magnetospheric interaction with the solar wind. Geophys. Res. Lett. https://doi.org/10.1029/2007GL031078 (2007).

  33. Cowley, S. W. H. et al. Reconnection in a rotation-dominated magnetosphere and its relation to Saturn’s auroral dynamics. J. Geophys. Res.: Space Phys. https://doi.org/10.1029/2004JA010796 (2005).

  34. Leboeuf, J. N., Tajima, T., Kennel, C. F. & Dawson, J. M. Global simulation of the time-dependent magnetosphere. Geophys. Res. Lett. 5, 609–612 (1978).

    Article  ADS  Google Scholar 

  35. Lyon, J. G., Brecht, S. H., Huba, J. D., Fedder, J. A. & Palmadesso, P. J. Computer simulation of a geomagnetic substorm. Phys. Rev. Lett. 46, 1038–1041 (1981).

    Article  ADS  Google Scholar 

  36. Raeder, J., Berchem, J. & Ashour-Abdalla, M. The geospace environment modeling grand challenge: results from a global geospace circulation model. J. Geophys. Res.: Space Phys. 103, 14787–14797 (1998).

    Article  ADS  Google Scholar 

  37. Tanaka, T. The state transition model of the substorm onset. J. Geophys. Res.: Space Phys. 105, 21081–21096 (2000).

    Article  ADS  Google Scholar 

  38. White, W. et al. in Space Weather (eds Song. P. et al.) 229–240 (AGU, 2001).

  39. Hu, Y. Q., Guo, X. C. & Wang, C. On the ionospheric and reconnection potentials of the Earth: results from global MHD simulations. J. Geophys. Res.: Space Phys. https://doi.org/10.1029/2006JA012145 (2007).

  40. Janhunen, P., Koskinen, K. & Pulkinen, T. A new global ionosphere–magnetosphere coupling simulation utilizing locally varying time step. In Proc. International Conference on Substorms (eds Rolfe, E. J. and Kaldeich, B.) 205–210 (ESA, 1996).

  41. Zhang, B., Lotko, W., Brambles, O., Wiltberger, M. & Lyon, J. Electron precipitation models in global magnetosphere simulations. J. Geophys. Res.: Space Phys. 120, 1035–1056 (2015).

    Article  ADS  Google Scholar 

  42. Choe, J. Y., Beard, D. B. & Sullivan, E. C. Precise calculation of the magnetosphere surface for a tilted dipole. Planet. Space Sci. 21, 485–498 (1973).

    Article  ADS  Google Scholar 

  43. Spreiter, J. R. & Alksne, A. Y. Plasma flow around the magnetosphere. Rev. Geophys. 7, 11–50 (1969).

    Article  ADS  Google Scholar 

  44. Joy, S. P. et al. Probabilistic models of the Jovian magnetopause and bow shock locations. J. Geophys. Res.: Space Phys. 107, 1309 (2002).

    Article  ADS  Google Scholar 

  45. Zhang, B. et al. How Jupiter’s unusual magnetospheric topology structures its aurora. Sci. Adv. 7, eabd1204 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  46. Yao, Z. et al. Revealing the source of Jupiter’s X-ray auroral flares. Sci. Adv. 7, eabf0851 (2021).

    Article  ADS  Google Scholar 

  47. Keiling, A., Wygant, J. R., Cattell, C. A., Mozer, F. S. & Russell, C. T. The global morphology of wave Poynting flux: powering the aurora. Science 299, 383–386 (2003).

    Article  ADS  Google Scholar 

  48. Keiling, A. The dynamics of the Alfvénic oval. J. Atmos. Sol.-Terr. Phys. 219, 105616 (2021).

    Article  Google Scholar 

  49. Zhang, B. et al. Magnetotail origins of auroral Alfvénic power. J. Geophys. Res.: Space Phys. https://doi.org/10.1029/2012JA017680 (2012).

  50. Ebert, R., Bagenal, F., McComas, D. & Fowler, C. A survey of solar wind conditions at 5 au: a tool for interpreting solar wind-magnetosphere interactions at Jupiter. Front. Astron. Space Sci. 1, 4 (2014).

    Article  ADS  Google Scholar 

  51. Echer, E. Solar wind and interplanetary shock parameters near Saturn’s orbit (10 au). Planet. Space Sci. 165, 210–220 (2019).

    Article  ADS  Google Scholar 

  52. Merkin, V. G. et al. Global MHD simulations of the strongly driven magnetosphere: modeling of the transpolar potential saturation. J. Geophys. Res.: Space Phys. https://doi.org/10.1029/2004JA010993 (2005).

  53. Siscoe, G., Raeder, J. & Ridley, A. J. Transpolar potential saturation models compared. J. Geophys. Res.: Space Phys. https://doi.org/10.1029/2003JA010318 (2004).

  54. Hill, T. W. Inertial limit on corotation. J. Geophys. Res.: Space Phys. 84, 6554–6558 (1979).

    Article  ADS  Google Scholar 

  55. Zhang, B. et al. How does mass loading impact local versus global control on dayside reconnection? Geophys. Res. Lett. 43, 1837–1844 (2016).

    Article  ADS  Google Scholar 

  56. Salveter, A., Saur, J., Clark, G. & Mauk, B. H. Jovian auroral electron precipitation budget—a statistical analysis of diffuse, mono-energetic, and broadband auroral electron distributions. J. Geophys. Res.: Space Phys. 127, e2021JA030224 (2022).

    Article  ADS  Google Scholar 

  57. Zhang, B. Z. et al. GAMERA: a three-dimensional finite-volume MHD solver for non-orthogonal curvilinear geometries. Astrophys. J. Suppl. Ser. 244, 35 (2019).

    Article  ADS  Google Scholar 

  58. Brambles, O. J. et al. Magnetosphere sawtooth oscillations induced by ionospheric outflow. Science 332, 1183–1186 (2011).

    Article  ADS  Google Scholar 

  59. Wiltberger, M., Lotko, W., Lyon, J. G., Damiano, P. & Merkin, V. Influence of cusp O+ outflow on magnetotail dynamics in a multifluid MHD model of the magnetosphere. J. Geophys. Res.: Space Phys. 115, 7 (2010).

    Article  Google Scholar 

  60. Lyon, J. G., Fedder, J. A. & Mobarry, C. M. The Lyon–Fedder–Mobarry (LFM) global MHD magnetospheric simulation code. J. Atmos. Sol.-Terr. Phys. 66, 1333–1350 (2004).

    Article  ADS  Google Scholar 

  61. Ouellette, J. E., Rogers, B. N., Wiltberger, M. & Lyon, J. G. Magnetic reconnection at the dayside magnetopause in global Lyon–Fedder–Mobarry simulations. J. Geophys. Res.: Space Phys. 115, A08222 (2010).

    Article  ADS  Google Scholar 

  62. Zhang, B. et al. Transition from global to local control of dayside reconnection from ionospheric-sourced mass loading. J. Geophys. Res.: Space Phys. 122, 9474–9488 (2017).

    Article  ADS  Google Scholar 

  63. Zhang, B., Brambles, O. J., Lotko, W. & Lyon, J. G. Is nightside outflow required to induce magnetospheric sawtooth oscillations. Geophys. Res. Lett. 47, e2019GL086419 (2020).

    Article  ADS  Google Scholar 

  64. Baumjohann, W. & Treumann, R. Basic Space Plasma Physics (World Scientific, 1996).

  65. Burke, W. J., Weimer, D. R. & Maynard, N. C. Geoeffective interplanetary scale sizes derived from regression analysis of polar cap potentials. J. Geophys. Res.: Space Phys. 104, 9989–9994 (1999).

    Article  ADS  Google Scholar 

  66. Spreiter, J. R., Summers, A. L. & Alksne, A. Y. Hydromagnetic flow around the magnetosphere. Planet. Space Sci. 14, 223–253 (1966).

    Article  ADS  Google Scholar 

  67. Bagenal, F. & Delamere, P. A. Flow of mass and energy in the magnetospheres of Jupiter and Saturn. J. Geophys. Res.: Space Phys. https://doi.org/10.1029/2010JA016294 (2011).

  68. Smith, H. T. et al. Enceladus plume variability and the neutral gas densities in Saturn’s magnetosphere. J. Geophys. Res.: Space Phys. https://doi.org/10.1029/2009JA015184 (2010).

  69. Lopez, R. E. The integrated dayside merging rate is controlled primarily by the solar wind. J. Geophys. Res.: Space Phys. 121, 4435–4445 (2016).

    Article  ADS  Google Scholar 

  70. Guo, R. L. et al. A rotating azimuthally distributed auroral current system on Saturn revealed by the Cassini spacecraft. Astrophys. J. Lett. 919, L25 (2021).

    Article  ADS  Google Scholar 

  71. Mauk, B. H. et al. in Saturn from Cassini-Huygens (eds Dougherty, M. K. et al.) 281–331 (Springer, 2009).

  72. Palmaerts, B. et al. A long-lasting auroral spiral rotating around Saturn’s pole. Geophys. Res. Lett. 47, e2020GL088810 (2020).

    Article  ADS  Google Scholar 

  73. Hue, V. et al. Detection and characterization of circular expanding UV-emissions observed in Jupiter’s polar auroral regions. J. Geophys. Res.: Space Phys. 126, e2020JA028971 (2021).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Excellent Young Scientists Fund (Hong Kong and Macau) of the National Natural Science Foundation of China (Grant Nos. 41922060, 42074211 and 42374212) and Research Grants Council (RGC) General Research Fund (Grant Nos. 17308221, 17308520, 17315222 and 17308723).

Author information

Authors and Affiliations

Authors

Contributions

B.Z. and Z. Y designed the numerical experiment and led the conceptual framework to understand the uniform auroral picture. O.J.B., J.C., K.A.S. and V.G.M. developed the numerical code. P.A.D., W.L. and J.G.L. provided crucial insights in the theoretical investigations. D.G. and B.B. processed the auroral images. All authors participated in producing the manuscript and revisions.

Corresponding author

Correspondence to Z. Yao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Robert Lysak and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Yao, Z., Brambles, O.J. et al. A unified framework for global auroral morphologies of different planets. Nat Astron (2024). https://doi.org/10.1038/s41550-024-02270-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41550-024-02270-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing