Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Intercalation in 2D materials and in situ studies

Abstract

Intercalation of atoms, ions and molecules is a powerful tool for altering or tuning the properties — interlayer interactions, in-plane bonding configurations, Fermi-level energies, electronic band structures and spin–orbit coupling — of 2D materials. Intercalation can induce property changes in materials related to photonics, electronics, optoelectronics, thermoelectricity, magnetism, catalysis and energy storage, unlocking or improving the potential of 2D materials in present and future applications. In situ imaging and spectroscopy technologies are used to visualize and trace intercalation processes. These techniques provide the opportunity for deciphering important and often elusive intercalation dynamics, chemomechanics and mechanisms, such as the intercalation pathways, reversibility, uniformity and speed. In this Review, we discuss intercalation in 2D materials, beginning with a brief introduction of the intercalation strategies, then we look into the atomic and intrinsic effects of intercalation, followed by an overview of their in situ studies, and finally provide our outlook.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Intercalation in 2D materials.
Fig. 2: How intercalation can bring synergistic effect and change interlayer interaction.
Fig. 3: How intercalation can lead to reconstruction of in-plane bonding.
Fig. 4: How intercalation shifts Fermi levels, alters electronic band structures and tunes spin–orbit effects and lattice parameters.
Fig. 5: Design of on-chip platform for in situ studies of intercalation in 2D materials.
Fig. 6: In situ studies of intercalation in 2D materials.

Similar content being viewed by others

References

  1. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Liu, Y. et al. Promises and prospects of two-dimensional transistors. Nature 591, 43–53 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Akinwande, D. et al. Graphene and two-dimensional materials for silicon technology. Nature 573, 507–518 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Deng, D. et al. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 11, 218–230 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Wu, Y., Li, D., Wu, C.-L., Hwang, H. Y. & Cui, Y. Electrostatic gating and intercalation in 2D materials. Nat. Rev. Mater. 8, 41–53 (2023). An authoritative review on intercalation and electrostatic gating in 2D materials.

    Article  Google Scholar 

  7. Koski, K. J. et al. Chemical intercalation of zerovalent metals into 2D layered Bi2Se3 nanoribbons. J. Am. Chem. Soc. 134, 13773–13779 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Zhao, X. et al. Engineering covalently bonded 2D layered materials by self-intercalation. Nature 581, 171–177 (2020). A representative work on self-intercalation, presenting the self-intercalation of Ta atoms in 2D TaS2 crystals, highlighting that self-intercalation is an approach to grow a new class of 2D materials with stoichiometry-dependent or composition-dependent properties.

    Article  CAS  PubMed  Google Scholar 

  9. Gong, Y. et al. Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics. Nat. Nanotechnol. 13, 294–299 (2018). A representative work on spatially controlled intercalation, presenting the spatially controlled intercalation of Cu and/or Co atoms in 2D SnS2 crystals realized by combining solution-based chemical intercalation with lithography.

    Article  CAS  PubMed  Google Scholar 

  10. Yu, Y. et al. Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nat. Nanotechnol. 10, 270–276 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Kühne, M. et al. Ultrafast lithium diffusion in bilayer graphene. Nat. Nanotechnol. 12, 895–900 (2017).

    Article  PubMed  Google Scholar 

  13. Zhu, X., Li, D., Liang, X. & Lu, W. D. Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing. Nat. Mater. 18, 141–148 (2019). A representative work on reversible electrochemical intercalation, presenting the reversible intercalation of Li+ in 2D MoS2 crystals, demonstrating that reversible intercalation of alkali metal ions leads to reversible phase transitions of 2D transition metal dichalcogenides.

    Article  CAS  PubMed  Google Scholar 

  14. Bediako, D. K. et al. Heterointerface effects in the electrointercalation of van der Waals heterostructures. Nature 558, 425–429 (2018). A representative work on intercalation in 2D van der Waals heterostructures, presenting the electrochemical Li+ intercalation in 2D hexagonal boron nitride/MoS2/graphene/hexagonal boron nitride heterostructures.

    Article  CAS  PubMed  Google Scholar 

  15. Wang, C. et al. Monolayer atomic crystal molecular superlattices. Nature 555, 231–236 (2018). A representative work on electrochemical organic ion intercalation, presenting the electrochemical intercalation of cetyl-trimethylammonium ions in 2D black phosphorus crystals, demonstrating that intercalation can trigger c-axis lattice expansion and result in monolayer natures in intercalated 2D materials.

    Article  CAS  PubMed  Google Scholar 

  16. Wu, Z. et al. Intercalation-driven ferroelectric-to-ferroelastic conversion in a layered hybrid perovskite crystal. Nat. Commun. 13, 3104 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Qian, Q. et al. Chiral molecular intercalation superlattices. Nature 606, 902–908 (2022). A representative work on molecular intercalation, presenting the intercalation of chiral molecules in 2D TaS2 and TiS2 crystals, highlighting that chiral molecular intercalation can make the intercalated 2D materials show chiral-induced spin selectivity.

    Article  CAS  PubMed  Google Scholar 

  18. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Yang, R. et al. Synthesis of atomically thin sheets by the intercalation-based exfoliation of layered materials. Nat. Synth. 2, 101–118 (2023). An authoritative review on intercalation as a tool for the exfoliation of 2D materials.

    Article  Google Scholar 

  20. Wan, J. et al. Tuning two-dimensional nanomaterials by intercalation: materials, properties and applications. Chem. Soc. Rev. 45, 6742–6765 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Rajapakse, M. et al. Intercalation as a versatile tool for fabrication, property tuning, and phase transitions in 2D materials. npj 2D Mater. Appl. 5, 30 (2021).

    Article  CAS  Google Scholar 

  22. Wang, S. et al. Electrochemical molecular intercalation and exfoliation of solution-processable two-dimensional crystals. Nat. Protoc. 18, 2814–2837 (2023).

    Article  CAS  PubMed  Google Scholar 

  23. Li, Z. et al. Intercalation strategy in 2D materials for electronics and optoelectronics. Small Methods 5, 2100567 (2021).

    Article  CAS  Google Scholar 

  24. Yang, R. et al. High-yield production of mono- or few-layer transition metal dichalcogenide nanosheets by an electrochemical lithium ion intercalation-based exfoliation method. Nat. Protoc. 17, 358–377 (2022). A representative work on intercalation as a tool for the exfoliation of 2D materials, presenting the electrochemical intercalation of Li+ in bulk materials for the exfoliation production of 2D MoS2, WS2, TiS2, TaS2, ZrS2, graphene, hexagonal boron nitride, NbSe2, WSe2, Sb2Se3 and Bi2Te3.

    Article  CAS  PubMed  Google Scholar 

  25. Chen, H., Ma, H. & Li, C. Host–guest intercalation chemistry in MXenes and its implications for practical applications. ACS Nano 15, 15502–15537 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Li, X. et al. MXene chemistry, electrochemistry and energy storage applications. Nat. Rev. Chem. 6, 389–404 (2022).

    Article  PubMed  Google Scholar 

  27. Hart, J. L. et al. Control of MXenes’ electronic properties through termination and intercalation. Nat. Commun. 10, 522 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Whittingham, M. S. Electrical energy storage and intercalation chemistry. Science 192, 1126–1127 (1976).

    Article  CAS  PubMed  Google Scholar 

  29. Zhang, L. et al. 2D atomic crystal molecular superlattices by soft plasma intercalation. Nat. Commun. 11, 5960 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wu, Y. et al. Chemical switching of low-loss phonon polaritons in α-MoO3 by hydrogen intercalation. Nat. Commun. 11, 2646 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jung, N. et al. Optical reflectivity and Raman scattering in few-layer-thick graphene highly doped by K and Rb. ACS Nano 5, 5708–5716 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Bointon, T. H. et al. Approaching magnetic ordering in graphene materials by FeCl3 intercalation. Nano Lett. 14, 1751–1755 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Zhou, J. et al. Layered intercalation materials. Adv. Mater. 33, 2004557 (2021).

    Article  CAS  Google Scholar 

  34. Zhu, X. et al. Exfoliation of MoS2 nanosheets enabled by a redox-potential-matched chemical lithiation reaction. Nano Lett. 22, 2956–2963 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, J. et al. Reversible and selective ion intercalation through the top surface of few-layer MoS2. Nat. Commun. 9, 5289 (2018). A representative work on intercalation from the top surface, presenting the Li+ and Na+ intercalation through the top surface of 2D MoS2 crystals realized by sealing the edges of MoS2 with metal or other encapsulating agents.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kühne, M. et al. Reversible superdense ordering of lithium between two graphene sheets. Nature 564, 234–239 (2018). A representative work on in situ transmission electron microscopic observation of intercalation in 2D materials, examining the Li+ intercalation and de-intercalation process in double-layer graphene sheet, indicating that Li+ tends to form multilayer ultra-dense and closely packed ordered structure in the middle of double-layer graphene sheets.

    Article  PubMed  Google Scholar 

  37. Sood, A. et al. Electrochemical ion insertion from the atomic to the device scale. Nat. Rev. Mater. 6, 847–867 (2021).

    Article  CAS  Google Scholar 

  38. Yang, C. et al. Aqueous Li-ion battery enabled by halogen conversion–intercalation chemistry in graphite. Nature 569, 245–250 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Cho, J.-H. et al. Controlling the intercalation chemistry to design high-performance dual-salt hybrid rechargeable batteries. J. Am. Chem. Soc. 136, 16116–16119 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Lin, Z. et al. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 562, 254–258 (2018). A representative work on intercalation as a tool for the exfoliation of 2D materials, presenting the electrochemical intercalation of tetraalkylammonium ions (R4N+) in bulk materials for the exfoliation production of 2D MoS2, WSe2, Bi2Se3, NbSe2, In2Se3and Sb2Te3.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang, X. et al. Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting. Nature 566, 368–372 (2019).

    Article  PubMed  Google Scholar 

  42. Lee, S. W. et al. Anisotropic angstrom-wide conductive channels in black phosphorus by top-down Cu intercalation. Nano Lett. 21, 6336–6342 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Lasek, K. et al. Molecular beam epitaxy of transition metal (Ti-, V-, and Cr-) tellurides: from monolayer ditellurides to multilayer self-intercalation compounds. ACS Nano 14, 8473–8484 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Guzman, R. et al. Collective magnetic behavior in vanadium telluride induced by self-intercalation. ACS Nano 17, 2450–2459 (2023).

    Article  CAS  PubMed  Google Scholar 

  45. Pan, S. et al. On-site synthesis and characterizations of atomically-thin nickel tellurides with versatile stoichiometric phases through self-intercalation. ACS Nano 16, 11444–11454 (2022).

    Article  CAS  PubMed  Google Scholar 

  46. Gong, Y. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13, 1135–1142 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Wu, Y. et al. Observation of an intermediate state during lithium intercalation of twisted bilayer MoS2. Nat. Commun. 13, 3008 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Niu, K. et al. Self-intercalated magnetic heterostructures in 2D chromium telluride. Adv. Funct. Mater. 33, 2208528 (2023).

    Article  CAS  Google Scholar 

  49. Zhang, C. et al. Room-temperature magnetic skyrmions and large topological Hall effect in chromium telluride engineered by self-intercalation. Adv. Mater. 35, 2205967 (2023).

    Article  CAS  Google Scholar 

  50. Saha, R. et al. Observation of Néel-type skyrmions in acentric self-intercalated Cr1+δTe2. Nat. Commun. 13, 3965 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang, X. et al. Self-intercalation tunable interlayer exchange coupling in a synthetic van der Waals antiferromagnet. Adv. Funct. Mater. 32, 2202977 (2022).

    Article  CAS  Google Scholar 

  52. Jiang, H. et al. Single atom catalysts in van der Waals gaps. Nat. Commun. 13, 6863 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yu, Y. et al. Ultra-thin SnS2-Pt nanocatalyst for efficient hydrogen evolution reaction. Nanomaterials 10, 2337 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li, K. et al. Tunable magnetic response in 2D materials via reversible intercalation of paramagnetic ions. Adv. Electron. Mater. 5, 1900040 (2019).

    Article  Google Scholar 

  55. Husremović, S. et al. Hard ferromagnetism down to the thinnest limit of iron-intercalated tantalum disulfide. J. Am. Chem. Soc. 144, 12167–12176 (2022).

    Article  PubMed  Google Scholar 

  56. Parvez, K. et al. Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J. Am. Chem. Soc. 136, 6083–6091 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Liu, N. et al. Large-area atomically thin MoS2 nanosheets prepared using electrochemical exfoliation. ACS Nano 8, 6902–6910 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Jordan, M. I. & Mitchell, T. M. Machine learning: trends, perspectives, and prospects. Science 349, 255–260 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Gamble, F. R., DiSalvo, F. J., Klemm, R. A. & Geballe, T. H. Superconductivity in layered structure organometallic crystals. Science 168, 568–570 (1970).

    Article  CAS  PubMed  Google Scholar 

  60. Pereira, J. M. et al. Percolating superconductivity in air-stable organic-ion intercalated MoS2. Adv. Funct. Mater. 32, 2208761 (2022).

    Article  CAS  Google Scholar 

  61. He, Q. et al. In situ probing molecular intercalation in two-dimensional layered semiconductors. Nano Lett. 19, 6819–6826 (2019).

    Article  CAS  PubMed  Google Scholar 

  62. Li, Z. et al. Imprinting ferromagnetism and superconductivity in single atomic layers of molecular superlattices. Adv. Mater. 32, 1907645 (2020).

    Article  CAS  Google Scholar 

  63. Li, J. et al. Printable two-dimensional superconducting monolayers. Nat. Mater. 20, 181–187 (2021).

    Article  CAS  PubMed  Google Scholar 

  64. Hor, Y. S. et al. Superconductivity in CuxBi2Se3 and its implications for pairing in the undoped topological insulator. Phys. Rev. Lett. 104, 057001 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Zhang, H. et al. Enhancement of superconductivity in organic–inorganic hybrid topological materials. Sci. Bull. 65, 188–193 (2020).

    Article  CAS  Google Scholar 

  66. Zhou, B. et al. A chemical-dedoping strategy to tailor electron density in molecular-intercalated bulk monolayer MoS2. Nat. Synth. 3, 67–75 (2023).

    Article  Google Scholar 

  67. Zhu, G. et al. Tuning thermal conductivity in molybdenum disulfide by electrochemical intercalation. Nat. Commun. 7, 13211 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kang, J. S., Ke, M. & Hu, Y. Ionic intercalation in two-dimensional van der Waals materials: in situ characterization and electrochemical control of the anisotropic thermal conductivity of black phosphorus. Nano Lett. 17, 1431–1438 (2017).

    Article  CAS  PubMed  Google Scholar 

  69. Sood, A. et al. An electrochemical thermal transistor. Nat. Commun. 9, 4510 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Wan, C. et al. Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. Nat. Mater. 14, 622–627 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Wan, C. et al. Intercalation: building a natural superlattice for better thermoelectric performance in layered chalcogenides. J. Electron. Mater. 40, 1271–1280 (2011).

    Article  CAS  Google Scholar 

  72. Soluyanov, A. A. et al. Type-II Weyl semimetals. Nature 527, 495–498 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Jiang, J. et al. Signature of type-II Weyl semimetal phase in MoTe2. Nat. Commun. 8, 13973 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Peng, J. et al. High phase purity of large-sized 1T′-MoS2 monolayers with 2D superconductivity. Adv. Mater. 31, 1900568 (2019).

    Article  Google Scholar 

  75. Friend, R. H. & Yoffe, A. D. Electronic properties of intercalation complexes of the transition metal dichalcogenides. Adv. Phys. 36, 1–94 (1987).

    Article  CAS  Google Scholar 

  76. Jung, N. et al. Charge transfer chemical doping of few layer graphenes: charge distribution and band gap formation. Nano Lett. 9, 4133–4137 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Musa, M. R. K. et al. Li interaction-induced phase transition from black to blue phosphorene. Phys. Rev. Mater. 5, 024007 (2021).

    Article  CAS  Google Scholar 

  78. Zhai, W. et al. Reversible semimetal–semiconductor transition of unconventional-phase WS2 nanosheets. J. Am. Chem. Soc. 145, 13444–13451 (2023).

    Article  CAS  PubMed  Google Scholar 

  79. Tian, B. et al. Phase transformations in TiS2 during K intercalation. ACS Energy Lett. 2, 1835–1840 (2017).

    Article  CAS  Google Scholar 

  80. Rasouli, H. R. et al. Electric-field-induced reversible phase transitions in a spontaneously ion-intercalated 2D metal oxide. Nano Lett. 21, 3997–4005 (2021).

    Article  CAS  PubMed  Google Scholar 

  81. Yang, R. et al. 2D transition metal dichalcogenides for photocatalysis. Angew. Chem. Int. Ed. 62, e202218016 (2023).

    Article  CAS  Google Scholar 

  82. Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V. & Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017).

    Article  CAS  Google Scholar 

  83. Li, W., Qian, X. & Li, J. Phase transitions in 2D materials. Nat. Rev. Mater. 6, 829–846 (2021).

    Article  CAS  Google Scholar 

  84. Yang, J. J., Strukov, D. B. & Stewart, D. R. Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Wang, Y. et al. Li intercalation in an MoSe2 electrocatalyst: in situ observation and modulation of its precisely controllable phase engineering for a high-performance flexible Li-S battery. Carbon Energy 5, e255 (2023).

    Article  CAS  Google Scholar 

  86. Wang, M. et al. A gapped phase in semimetallic Td-WTe2 induced by lithium intercalation. Adv. Mater. 34, 2200861 (2022).

    Article  CAS  Google Scholar 

  87. Wu, J. et al. Solution processing for lateral transition-metal dichalcogenides homojunction from polymorphic crystal. J. Am. Chem. Soc. 141, 592–598 (2019).

    Article  CAS  PubMed  Google Scholar 

  88. Zhu, Z. & Tománek, D. Semiconducting layered blue phosphorus: a computational study. Phys. Rev. Lett. 112, 176802 (2014).

    Article  PubMed  Google Scholar 

  89. Voiry, D. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 12, 850–855 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Acerce, M., Voiry, D. & Chhowalla, M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 10, 313–318 (2015).

    Article  CAS  PubMed  Google Scholar 

  91. Yao, J. et al. Optical transmission enhancement through chemically tuned two-dimensional bismuth chalcogenide nanoplates. Nat. Commun. 5, 5670 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Holzwarth, N. A. W., Louie, S. G. & Rabii, S. Lithium-intercalated graphite: self-consistent electronic structure for stages one, two, and three. Phys. Rev. B 28, 1013–1025 (1983).

    Article  CAS  Google Scholar 

  93. Bao, W. et al. Approaching the limits of transparency and conductivity in graphitic materials through lithium intercalation. Nat. Commun. 5, 4224 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Xiong, F. et al. Li intercalation in MoS2: in situ observation of its dynamics and tuning optical and electrical properties. Nano Lett. 15, 6777–6784 (2015). A representative work on in situ optical microscope observation of intercalation in 2D materials, examining the Li+ intercalation and de-intercalation process in 2D MoS2, indicating that intercalation of foreign species normally starts from the edge of 2D materials and gradually extends to the whole flake.

    Article  CAS  PubMed  Google Scholar 

  95. Wan, J. et al. In situ investigations of Li-MoS2 with planar batteries. Adv. Energy Mater. 5, 1401742 (2015).

    Article  Google Scholar 

  96. Zhang, R. et al. Breaking the cut-off wavelength limit of GaTe through self-driven oxygen intercalation in air. Adv. Sci. 9, 2103429 (2022).

    Article  CAS  Google Scholar 

  97. Kanetani, K. et al. Ca intercalated bilayer graphene as a thinnest limit of superconducting C6Ca. Proc. Natl Acad. Sci. USA 109, 19610–19613 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yang, S. L. et al. Superconducting graphene sheets in CaC6 enabled by phonon-mediated interband interactions. Nat. Commun. 5, 3493 (2014).

    Article  PubMed  Google Scholar 

  99. Zhang, R., Waters, J., Geim, A. K. & Grigorieva, I. V. Intercalant-independent transition temperature in superconducting black phosphorus. Nat. Commun. 8, 15036 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lian, C.-S., Si, C., Wu, J. & Duan, W. First-principles study of Na-intercalated bilayer NbSe2: suppressed charge-density wave and strain-enhanced superconductivity. Phys. Rev. B 96, 235426 (2017).

    Article  Google Scholar 

  101. Morosan, E. et al. Superconductivity in CuxTiSe2. Nat. Phys. 2, 544–550 (2006).

    Article  CAS  Google Scholar 

  102. Wu, H. et al. Spacing dependent and cation doping independent superconductivity in intercalated 1T 2D SnSe2. 2D Mater. 6, 045048 (2019).

    Article  CAS  Google Scholar 

  103. Vithanage, D. et al. Electrochemical Li intercalation in b-AsyP1−y alloys: in-situ Raman spectroscopy study. J. Alloy Compd. 968, 171849 (2023).

    Article  CAS  Google Scholar 

  104. Verzhbitskiy, I. A. et al. Controlling the magnetic anisotropy in Cr2Ge2Te6 by electrostatic gating. Nat. Electron. 3, 460–465 (2020).

    Article  CAS  Google Scholar 

  105. Huang, X. et al. Li-ion intercalation enhanced ferromagnetism in van der Waals Fe3GeTe2 bilayer. Appl. Phys. Lett. 119, 012405 (2021).

    Article  CAS  Google Scholar 

  106. Mi, M. et al. Variation between antiferromagnetism and ferrimagnetism in NiPS3 by electron doping. Adv. Funct. Mater. 32, 2112750 (2022).

    Article  CAS  Google Scholar 

  107. Wang, G., Yu, M. & Feng, X. Carbon materials for ion-intercalation involved rechargeable battery technologies. Chem. Soc. Rev. 50, 2388–2443 (2021).

    Article  CAS  PubMed  Google Scholar 

  108. Huang, Z. et al. Anion chemistry in energy storage devices. Nat. Rev. Chem. 7, 616–631 (2023).

    Article  PubMed  Google Scholar 

  109. Yang, R. et al. Fabrication of liquid cell for in situ transmission electron microscopy of electrochemical processes. Nat. Protoc. 18, 555–578 (2023).

    CAS  PubMed  Google Scholar 

  110. Zeng, Z. et al. In situ study of lithiation and delithiation of MoS2 nanosheets using electrochemical liquid cell transmission electron microscopy. Nano Lett. 15, 5214–5220 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Lacey, S. D. et al. Atomic force microscopy studies on molybdenum disulfide flakes as sodium-ion anodes. Nano Lett. 15, 1018–1024 (2015).

    Article  CAS  PubMed  Google Scholar 

  112. Wan, J. et al. Ultra-thin solid electrolyte interphase evolution and wrinkling processes in molybdenum disulfide-based lithium-ion batteries. Nat. Commun. 10, 3265 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Hui, J., Burgess, M., Zhang, J. & Rodríguez-López, J. Layer number dependence of Li+ intercalation on few-layer graphene and electrochemical imaging of its solid–electrolyte interphase evolution. ACS Nano 10, 4248–4257 (2016).

    Article  CAS  PubMed  Google Scholar 

  114. Ji, J.-Y. et al. Homogeneous lateral lithium intercalation into transition metal dichalcogenides via ion backgating. Nano Lett. 22, 7336–7342 (2022).

    Article  CAS  PubMed  Google Scholar 

  115. Zielinski, P. et al. Probing exfoliated graphene layers and their lithiation with microfocused X-rays. Nano Lett. 19, 3634–3640 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhao, S. Y. F. et al. Controlled electrochemical intercalation of graphene/h-BN van der Waals heterostructures. Nano Lett. 18, 460–466 (2018).

    Article  CAS  PubMed  Google Scholar 

  117. Azhagurajan, M., Kajita, T., Itoh, T., Kim, Y.-G. & Itaya, K. In situ visualization of lithium ion intercalation into MoS2 single crystals using differential optical microscopy with atomic layer resolution. J. Am. Chem. Soc. 138, 3355–3361 (2016).

    Article  CAS  PubMed  Google Scholar 

  118. Sun, J. et al. A phosphorene–graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat. Nanotechnol. 10, 980–985 (2015).

    Article  CAS  PubMed  Google Scholar 

  119. Wang, L., Xu, Z., Wang, W. & Bai, X. Atomic mechanism of dynamic electrochemical lithiation processes of MoS2 nanosheets. J. Am. Chem. Soc. 136, 6693–6697 (2014).

    Article  CAS  PubMed  Google Scholar 

  120. Gao, P., Wang, L., Zhang, Y., Huang, Y. & Liu, K. Atomic-scale probing of the dynamics of sodium transport and intercalation-induced phase transformations in MoS2. ACS Nano 9, 11296–11301 (2015).

    Article  CAS  PubMed  Google Scholar 

  121. Hwang, S. et al. Multistep lithiation of tin sulfide: an investigation using in situ electron microscopy. ACS Nano 12, 3638–3645 (2018).

    Article  CAS  PubMed  Google Scholar 

  122. Nie, A. et al. Selective ionic transport pathways in phosphorene. Nano Lett. 16, 2240–2247 (2016).

    Article  CAS  PubMed  Google Scholar 

  123. Kim, S., Cui, J., Dravid, V. P. & He, K. Orientation-dependent intercalation channels for lithium and sodium in black phosphorus. Adv. Mater. 31, 1904623 (2019).

    Article  CAS  Google Scholar 

  124. Zhang, L. et al. Electrochemical reaction mechanism of the MoS2 electrode in a lithium-ion cell revealed by in situ and operando X-ray absorption spectroscopy. Nano Lett. 18, 1466–1475 (2018).

    Article  CAS  PubMed  Google Scholar 

  125. Rajapakse, M. et al. Electrochemical Li intercalation in black phosphorus: in situ and ex situ studies. J. Phys. Chem. C. 124, 10710–10718 (2020).

    Article  CAS  Google Scholar 

  126. Hong, X. et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 9, 682–686 (2014).

    Article  CAS  PubMed  Google Scholar 

  127. Li, F. et al. In situ study of K+ electrochemical intercalating into MoS2 flakes. J. Phys. Chem. C 123, 5067–5072 (2019).

    Article  CAS  Google Scholar 

  128. Pondick, J. V. et al. The effect of mechanical strain on lithium staging in graphene. Adv. Electron. Mater. 7, 2000981 (2021).

    Article  CAS  Google Scholar 

  129. Yadegari, H. et al. Operando measurement of layer breathing modes in lithiated graphite. ACS Energy Lett. 6, 1633–1638 (2021).

    Article  CAS  Google Scholar 

  130. Xue, W. et al. Intercalation-conversion hybrid cathodes enabling Li–S full-cell architectures with jointly superior gravimetric and volumetric energy densities. Nat. Energy 4, 374–382 (2019).

    Article  CAS  Google Scholar 

  131. Kim, W. J. et al. Geometric frustration of Jahn–Teller order in the infinite-layer lattice. Nature 615, 237–243 (2023).

    Article  CAS  PubMed  Google Scholar 

  132. Kuai, L. et al. Revealing crystallization dynamics and the compositional control mechanism of 2D perovskite film growth by in situ synchrotron-based GIXRD. ACS Energy Lett. 5, 8–16 (2020).

    Article  CAS  Google Scholar 

  133. Li, L. et al. Visualization of electrochemically driven solid-state phase transformations using operando hard X-ray spectro-imaging. Nat. Commun. 6, 6883 (2015).

    Article  CAS  PubMed  Google Scholar 

  134. Lim, J. et al. Origin and hysteresis of lithium compositional spatiodynamics within battery primary particles. Science 353, 566–571 (2016).

    Article  CAS  PubMed  Google Scholar 

  135. Mefford, J. T. et al. Correlative operando microscopy of oxygen evolution electrocatalysts. Nature 593, 67–73 (2021).

    Article  CAS  PubMed  Google Scholar 

  136. Liu, T. et al. Origin of structural degradation in Li-rich layered oxide cathode. Nature 606, 305–312 (2022).

    Article  CAS  PubMed  Google Scholar 

  137. Li, J. et al. Dynamics of particle network in composite battery cathodes. Science 376, 517–521 (2022).

    Article  CAS  PubMed  Google Scholar 

  138. Man, M. K. L. et al. Imaging the motion of electrons across semiconductor heterojunctions. Nat. Nanotechnol. 12, 36–40 (2017).

    Article  CAS  PubMed  Google Scholar 

  139. Lv, B., Qian, T. & Ding, H. Angle-resolved photoemission spectroscopy and its application to topological materials. Nat. Rev. Phys. 1, 609–626 (2019).

    Article  Google Scholar 

  140. Zhang, H. et al. Angle-resolved photoemission spectroscopy. Nat. Rev. Method. Prime. 2, 54 (2022).

    Article  CAS  Google Scholar 

  141. Yang, H. et al. Visualizing electronic structures of quantum materials by angle-resolved photoemission spectroscopy. Nat. Rev. Mater. 3, 341–353 (2018).

    Article  CAS  Google Scholar 

  142. Reimann, J. et al. Subcycle observation of lightwave-driven Dirac currents in a topological surface band. Nature 562, 396–400 (2018).

    Article  CAS  PubMed  Google Scholar 

  143. Karni, O. et al. Structure of the moiré exciton captured by imaging its electron and hole. Nature 603, 247–252 (2022).

    Article  CAS  PubMed  Google Scholar 

  144. Park, S. et al. Enhancing catalytic activity of MoS2 basal plane s-vacancy by co-cluster addition. ACS Energy Lett. 3, 2685–2693 (2018).

    Article  CAS  Google Scholar 

  145. Kim, H. W. et al. Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts. Nat. Catal. 1, 282–290 (2018).

    Article  Google Scholar 

  146. Du, L. et al. Moiré photonics and optoelectronics. Science 379, eadg0014 (2023).

    Article  CAS  PubMed  Google Scholar 

  147. Zhao, B. et al. High-order superlattices by rolling up van der Waals heterostructures. Nature 591, 385–390 (2021).

    Article  CAS  PubMed  Google Scholar 

  148. Cui, X. et al. Rolling up transition metal dichalcogenide nanoscrolls via one drop of ethanol. Nat. Commun. 9, 1301 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Liang, L. et al. Inducing ferromagnetism and Kondo effect in platinum by paramagnetic ionic gating. Sci. Adv. 4, eaar2030 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Huang, Y. et al. Hybrid superlattices of two-dimensional materials and organics. Chem. Soc. Rev. 49, 6866–6883 (2020).

    Article  CAS  PubMed  Google Scholar 

  151. Wang, A., Li, J. & Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2, 65–81 (2018).

    Article  CAS  Google Scholar 

  152. Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).

    Article  CAS  Google Scholar 

  153. Joensen, P., Frindt, R. F. & Morrison, S. R. Single-layer MoS2. Mater. Res. Bull. 21, 457–461 (1986).

    Article  CAS  Google Scholar 

  154. Eda, G. et al. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 11, 5111–5116 (2011).

    Article  CAS  PubMed  Google Scholar 

  155. Zeng, Z. et al. Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew. Chem. Int. Ed. 50, 11093–11097 (2011).

    Article  CAS  Google Scholar 

  156. Tsai, H.-L., Heising, J., Schindler, J. L., Kannewurf, C. R. & Kanatzidis, M. G. Exfoliated−restacked phase of WS2. Chem. Mater. 9, 879–882 (1997).

    Article  CAS  Google Scholar 

  157. Voiry, D. et al. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 13, 6222–6227 (2013).

    Article  CAS  PubMed  Google Scholar 

  158. Zheng, J. et al. High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nat. Commun. 5, 2995 (2014).

    Article  PubMed  Google Scholar 

  159. Zeng, Z. et al. An effective method for the fabrication of few-layer-thick inorganic nanosheets. Angew. Chem. Int. Ed. 51, 9052–9056 (2012).

    Article  CAS  Google Scholar 

  160. Zhang, X. et al. Lithiation-induced amorphization of Pd3P2S8 for highly efficient hydrogen evolution. Nat. Catal. 1, 460–468 (2018).

    Article  CAS  Google Scholar 

  161. Chen, W. et al. Two-dimensional quantum-sheet films with sub-1.2 nm channels for ultrahigh-rate electrochemical capacitance. Nat. Nanotechnol. 17, 153–158 (2022).

    Article  CAS  PubMed  Google Scholar 

  162. Jeon, I., Yoon, B., He, M. & Swager, T. M. Hyperstage graphite: electrochemical synthesis and spontaneous reactive exfoliation. Adv. Mater. 30, 1704538 (2018).

    Article  Google Scholar 

  163. Yu, W. et al. Chemically exfoliated VSe2 monolayers with room-temperature ferromagnetism. Adv. Mater. 31, 1903779 (2019).

    Article  CAS  Google Scholar 

  164. Yu, W. et al. Domain engineering in ReS2 by coupling strain during electrochemical exfoliation. Adv. Funct. Mater. 30, 2003057 (2020).

    Article  CAS  Google Scholar 

  165. Yu, W. et al. High-yield exfoliation of monolayer 1T’-MoTe2 as saturable absorber for ultrafast photonics. ACS Nano 15, 18448–18457 (2021).

    Article  CAS  PubMed  Google Scholar 

  166. Huang, Z. et al. Layer-tunable phosphorene modulated by the cation insertion rate as a sodium-storage anode. Adv. Mater. 29, 1702372 (2017).

    Article  Google Scholar 

  167. Li, J. et al. Ultrafast electrochemical expansion of black phosphorus toward high-yield synthesis of few-layer phosphorene. Chem. Mater. 30, 2742–2749 (2018).

    Article  CAS  Google Scholar 

  168. Yang, S. et al. A delamination strategy for thinly layered defect-free high-mobility black phosphorus flakes. Angew. Chem. Int. Ed. 57, 4677–4681 (2018).

    Article  CAS  Google Scholar 

  169. Wang, N. et al. Electrochemical delamination of ultralarge few-layer black phosphorus with a hydrogen-free intercalation mechanism. Adv. Mater. 33, 2005815 (2021).

    Article  CAS  Google Scholar 

  170. Shi, H. et al. Ultrafast electrochemical synthesis of defect-free In2Se3 flakes for large-area optoelectronics. Adv. Mater. 32, 1907244 (2020).

    Article  CAS  Google Scholar 

  171. Lin, Z. et al. High-yield exfoliation of 2D semiconductor monolayers and reassembly of organic/inorganic artificial superlattices. Chem 7, 1887–1902 (2021).

    Article  CAS  Google Scholar 

  172. Peng, J. et al. Stoichiometric two-dimensional non-van der Waals AgCrS2 with superionic behaviour at room temperature. Nat. Chem. 13, 1235–1240 (2021).

    Article  CAS  PubMed  Google Scholar 

  173. Lee, J. et al. Thin-film image sensors with a pinned photodiode structure. Nat. Electron. 6, 590–598 (2023).

    Article  Google Scholar 

  174. Conti, S. et al. Printed transistors made of 2D material-based inks. Nat. Rev. Mater. 8, 651–667 (2023).

    Article  Google Scholar 

  175. Yan, Z. et al. Highly stretchable van der Waals thin films for adaptable and breathable electronic membranes. Science 375, 852–859 (2022).

    Article  CAS  PubMed  Google Scholar 

  176. Su, C.-Y. et al. High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano 5, 2332–2339 (2011).

    Article  CAS  PubMed  Google Scholar 

  177. Zhou, F. et al. Electrochemically scalable production of fluorine-modified graphene for flexible and high-energy ionogel-based microsupercapacitors. J. Am. Chem. Soc. 140, 8198–8205 (2018).

    Article  CAS  PubMed  Google Scholar 

  178. Ding, Y. et al. Controlled intercalation and chemical exfoliation of layered metal–organic frameworks using a chemically labile intercalating agent. J. Am. Chem. Soc. 139, 9136–9139 (2017).

    Article  CAS  PubMed  Google Scholar 

  179. Jeong, S. et al. Tandem intercalation strategy for single-layer nanosheets as an effective alternative to conventional exfoliation processes. Nat. Commun. 6, 5763 (2015).

    Article  CAS  PubMed  Google Scholar 

  180. Watts, M. C. et al. Production of phosphorene nanoribbons. Nature 568, 216–220 (2019).

    Article  CAS  PubMed  Google Scholar 

  181. Macdonald, T. J. et al. Phosphorene nanoribbon-augmented optoelectronics for enhanced hole extraction. J. Am. Chem. Soc. 143, 21549–21559 (2021).

    Article  CAS  PubMed  Google Scholar 

  182. Abu, U. O. et al. Ultra-narrow phosphorene nanoribbons produced by facile electrochemical process. Adv. Sci. 9, 2203148 (2022).

    Article  CAS  Google Scholar 

  183. Liu, Z. et al. Unzipping of black phosphorus to form zigzag-phosphorene nanobelts. Nat. Commun. 11, 3917 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Yu, W. et al. Facile production of phosphorene nanoribbons towards application in lithium metal battery. Adv. Mater. 33, 2102083 (2021).

    Article  CAS  Google Scholar 

  185. Akhtar, M. et al. Recent advances in synthesis, properties, and applications of phosphorene. npj 2D Mater. Appl. 1, 5 (2017).

    Article  Google Scholar 

  186. Zhang, H. et al. Tailored Ising superconductivity in intercalated bulk NbSe2. Nat. Phys. 18, 1425–1430 (2022).

    Article  CAS  Google Scholar 

  187. Pastor, E. et al. Complementary probes for the electrochemical interface. Nat. Rev. Chem. 8, 159–178 (2024).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Z.Z. thanks the General Research Fund (GRF) support from the Research Grants Council of the Hong Kong Special Administrative Region, China [Project No. CityU11308923], the Basic Research Project from Shenzhen Science and Technology Innovation Committee in Shenzhen, China [No. JCYJ20210324134012034], the Applied Research Grant of City University of Hong Kong (Project No. 9667247) and Chow Sang Sang Group Research Fund of City University of Hong Kong (Project No. 9229123) for funding support. Z.Z. is also thankful for the funding provided by the Seed Collaborative Research Fund Scheme of State Key Laboratory of Marine Pollution, which receives research funding from the Innovation and Technology Commission (ITC) of the Hong Kong SAR Government. Any opinions, findings, conclusions or recommendations expressed in this publication do not reflect the views of the Hong Kong SAR Government or the ITC. Q.L. is thankful for a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant and an Alberta Innovates Advance Program–NSERC Alliance Grant. J.G. thanks the Advanced Light Source-U.S. DOE Office of Science User Facility under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Contributions

Z.Z. proposed the topic of the Review. R.Y., L.M., J.L. and Z.Z. co-wrote the manuscript. R.Y., L.M. and Z.L. contributed equally to this work. All authors contributed to the revisions and edits of the manuscript.

Corresponding authors

Correspondence to Qingye Lu, Ju Li or Zhiyuan Zeng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, R., Mei, L., Lin, Z. et al. Intercalation in 2D materials and in situ studies. Nat Rev Chem (2024). https://doi.org/10.1038/s41570-024-00605-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41570-024-00605-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing