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Abstract
Many psychiatric disorders are characterized by a strong sex difference, but the mechanisms behind sex-bias are not fully
understood. DNA methylation plays important roles in regulating gene expression, ultimately impacting sexually different
characteristics of the human brain. Most previous literature focused on DNA methylation alone without considering the
regulatory network and its contribution to sex-bias of psychiatric disorders. Since DNA methylation acts in a complex
regulatory network to connect genetic and environmental factors with high-order brain functions, we investigated the
regulatory networks associated with different DNA methylation and assessed their contribution to the risks of psychiatric
disorders. We compiled data from 1408 postmortem brain samples in 3 collections to identify sex-differentially methylated
positions (DMPs) and regions (DMRs). We identified and replicated thousands of DMPs and DMRs. The DMR genes were
enriched in neuronal related pathways. We extended the regulatory networks related to sex-differential methylation and
psychiatric disorders by integrating methylation quantitative trait loci (meQTLs), gene expression, and protein–protein
interaction data. We observed significant enrichment of sex-associated genes in psychiatric disorder-associated gene sets. We
prioritized 2080 genes that were sex-biased and associated with psychiatric disorders, such as NRXN1, NRXN2, NRXN3,
FDE4A, and SHANK2. These genes are enriched in synapse-related pathways and signaling pathways, suggesting that sex-
differential genes of these neuronal pathways may cause the sex-bias of psychiatric disorders.

Introduction

Many psychiatric disorders are characterized by a strong
sexual difference including different prevalence, age of
onset, symptom severity, and responses to medications. For
example, males are 3–4 times more likely to develop autism
spectrum disorder (ASD) [1, 2], and typically have an
earlier age of onset and a worse course of treatment for
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schizophrenia (SCZ) [3]. Females are 2–3 times more likely
to develop major depression disorder (MDD) [4] and
exhibit greater symptom severity, greater functional
impairment, more atypical depressive symptoms and higher
rates of comorbid anxiety [5]. Understanding the basis of
sex difference in these disorders can provide important
insights into their etiology and offer an opportunity to
deliver sex-specific treatments and care.

At least four models have been proposed to explain sex
bias of psychiatric diseases [6–8]: specific susceptibility
genes that reside on the X or Y chromosome [9], differential
genetic liability thresholds between the sexes [7], major
influences of hormonal levels in the sexes [10], and gene–
sex interactions [11]. A recent study that systematically
evaluated the four models proposed that genetic–environ-
mental interaction has a strong contribution of sex bias in
psychiatric disorders [12]. However, the molecular
mechanisms that link genetic–environmental factors to sex-
biased phenotypes are unknown.

Epigenetics is the product of genetic and environmental
influences [13], thus epigenetic modifications of DNA are
attractive candidates for explaining sexual differences.
DNA methylation, the best-studied type of DNA mod-
ification, has been reported to play important roles in
sexually differential characteristics of the human brain
[14–29]. For example, McCarthy et al. [26] conducted a
meta-analysis on multiple tissues including brain and found
sex-specific methylated genes related to immune response,
RNA splicing, and DNA repair. Xu et al. [21] reported sex-
specific methylated genes that participate in ribosome
structure and function, RNA binding, and protein transla-
tion in adult postmortem prefrontal cortex. Spiers et al. [21]
analyzed sex-differential methylation in fetal brain and
found a highly significant correlation with results from Xu
et al., indicating that most sex differences in the brain
methylome occur early in fetal development and are stable
throughout life. However, these studies only focused on
DNA methylation and did not study the regulatory networks
associated with this epigenetic modification. It is unknown
whether or how these regulatory components, which contain
upstream genetic regulators [30] and a cascade of down-
stream gene expression and associated protein networks,
could influence sex bias of psychiatric disorders.

The purpose of this study is to describe the landscape of
sex-differential DNA methylation, explore its regulatory
networks, and evaluate their potential involvement in psy-
chiatric disorders. Our hypotheses are: (1) sex-differences
exist at both DNA methylation and its regulatory networks;
(2) psychiatric disorder-related genes have different
methylation levels or different methylation regulation
between male and female. We compiled data from 1408
postmortem brain samples from three collections and
investigated sex-associated individual CpG loci

(differentially methylated positions, DMPs) and genomic
regions (differentially methylated regions, DMRs). Then we
investigated the related genetic, transcriptomic and pro-
teomic regulatory networks of DMPs or DMRs. Further, we
explored their contribution to the sex bias of psychiatric
disorders. We found 2080 genes with sex-differential
methylation that have been previously associated with
psychiatric disorders. These genes are enriched in synapse-
related and signaling pathways.

Materials and methods

To systematically explore sex-differential DNA methyla-
tion profiles and related regulatory networks in human
brain, we obtained data of 1408 human postmortem brain
samples from three collections, the Religious Orders
Study and the Rush Memory and Aging Project (ROS-
MAP) [30], Jaffe et al. [19], and Horvath et al. [31].
(Fig. 1). The ROSMAP dataset was generated from dor-
solateral prefrontal cortex (DLPFC) of 698 nonpsychiatric
controls which contained 227 males and 471 females. For
the collection of Jaffe et al., we used the DLPFC data
from 450 controls without any known history of psy-
chiatric disorders (158 female, 292 males) across the
lifespan. For the collection of Horvath et al., 260 control
samples (130 females, 130 males) from multiple brain
regions were collected, including caudate nucleus (n=
12), cingulate gyrus (n= 12), cerebellum (n= 32), frontal
cortex (n= 41), hippocampus (n= 25), midbrain (n=
18), motor cortex (n= 12), occipital cortex (n= 33),
parietal lobe (n= 23), sensory cortex (n= 12), temporal
cortex (n= 29), and visual cortex (n= 11) [31].

DNA methylation data

DNA methylation was characterized using Illumina
HumanMethylation450 BeadChips to interrogate more than
485,000 methylation sites in the three collections. Raw data
(idat format) were provided by both ROSMAP and Jaffe
et al. (GSE74193), while the β value matrix was provided
by Horvath et al. (GSE64509). We used the ROSMAP data
as the discovery dataset for sex-differential DNA methyla-
tion profiling since it had the largest sample size.
GSE74193 and GSE64509 were used as the replication
datasets. We used data from all the brain regions in
GSE64509 to replicate the results from discovery dataset.

Gene-expression data

Gene-expression data were obtained from ROSMAP sam-
ples using RNA-sequencing from DLPFC of 540 individuals
(a subset of DNA methylation samples). Gene-expression
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data were normalized using fragments per kilobase of tran-
script per million (FPKM) values. Detailed descriptions of
data acquisition, RNA-seq protocols, and the process pipe-
line are as described previously [32].

MeQTL data

The meQTL data were obtained from the Jaffe et al. and
ROSMAP. In the ROSMAP study, Ng et al. performed
meQTL mapping between single polynucleotide poly-
morphisms (SNPs) and methylation in 5 kb windows
among 463 individuals. In total 9,939,236 SNP-
methylation pairs were tested which contained
2,358,873 SNPs and 412,152 CpG sites, resulting in
693,696 significant meQTL pairs (383,920 SNPs with
56,973 CpG sites) using a Bonferroni corrected p value
threshold (adj. p < 0.05, two-tailed) (detailed procedure of
meQTL mapping is described previously [32]). Jaffe et al.
performed meQTL mapping in 20 kb windows among 258
individuals. In total 7,426,085 SNPs and 477,636 CpG
sites were analyzed, resulting in 4,107,214 significant
meQTLs at a false-discovery rate (FDR) < 1%. In this

study, we combined these two meQTL datasets, and used
only the reproducible meQTLs pairs that were statistically
significant in both datasets.

Protein–protein interaction data

The protein–protein interaction (PPI) data, for building
downstream regulatory network, was derived from the
Pathway Commons resource [33] based on the procedure
described by West et al. [34]. The PPI network consists of
8434 genes (annotated to NCBI Entrez identifiers) and
303,600 interactions.

Quality control and preprocessing

We used the R package ChAMP (version 1.2.1) [35] to
process the raw idat format methylation data. The function
champ.load was used to remove probes meeting the fol-
lowing criteria: (1) probes with a detection p value above
0.01 in one or more samples; (2) probes with beads count
<3 in at least 5% of samples; (3) probes with SNPs as
identified in Zhou et al. [36]; and (4) probes that align to
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multiple locations as identified in Zhou et al. [36]. Probes
with a β value of 0 were replaced with 1.00e−6, and probes
with missing β values were imputed using a k-nearest
neighbor algorithm by impute.knn function in impute
package [37]. Samples with more than 1% of probes filtered
were removed. We next used beta mixture quantile dilation
(BMIQ) in function champ.norm to adjust the β values of
type II probes into a statistical distribution characteristic of
type I probes, which has previously been shown to best
minimize the variability between replicates [38]. After
BMIQ normalization, we further filtered the probes based
on the high-quality probes [39] defined by Naeem et al.
Probes were removed when they had: (1) the variants based
on the 1000 Genomes database, (2) small insertions and
deletions, (3) repetitive DNA, and (4) regions with reduced
genomic complexity that may affect probe hybridization.

Considering the impact of variable cell-types’ composi-
tions on DNA methylation, we calculated the cell-type
compositions of the brain tissue using a reference-based
method, RefbaseEWAS [40]. We downloaded DNA
methylation reference data from 28 control brains, that had
been processed by fluorescence activated cell sorting to
extract different cell types [41]. We calculated cell-type
proportions and used the values as covariates in further
analysis. We applied the singular value decomposition
method (SVD) [42] to identify unknown covariates. Com-
Bat function was used to correct batch effects and position
effects [43–45]. Other confounders such as age and post-
mortem interval were controlled using a linear regression
model. Confounder removal was confirmed by surrogate
variable analysis [44].

Quality control for gene-expression data involved
selecting genes with FPKM > 0.1 in at least ten samples
which removed the low-expressed genes. Potential con-
founders such as batch effects, age, and cell component
were removed by SVD. We used the log 2 transformed
FPKM value for further association analysis.

Sex-differentially methylated positions and regions

After removal of all confounders, statistical analysis was
implemented to identify sex-DMPs and regions (DMRs).
Since the M-values (log2 ratio of the intensities of methy-
lated probe versus unmethylated probe) are more statisti-
cally valid for the differential analysis of methylation levels
[46], we calculated the M value from the β value and used
the M value to calculate the differential methylation signal
between males and females using limma [47]. After cor-
recting the multiple test burden, we defined the features
with FDR < 0.05 as DMPs (Fig. 1a). To detect the sex-
differential DNA methylation regions, we used the DMR-
finding algorithm DMRcate [48], which clustered the
groups of significant probes (FDR < 0.05) within 1 kb as

DMR, and excluded DMRs containing less than three
CpG sites.

Sex-differential regulatory network

To comprehensively understand the DNA methylation
regulatory network, we integrated upstream genetic reg-
ulators, downstream gene expression, and protein–protein
intereraction (PPI) networks with DMPs and DMRs. The
meQTL data from both ROSMAP and GSE74193, gene
expression from ROSMAP, and PPI data from Pathway
Common were used in this regulatory network (Fig. 1b).
We searched for DMPs and potential upstream regulators
using reproducible meQTLs from ROSMAP and
GSE74193 formed as SNP–DMP pairs. Then we tested the
association of DMPs with gene expression by calculating
the Spearman correlation between the methylation level of
DMPs (β value) and the expression levels of nearby genes
(10 kb). This calculation was based on methylation and
expression data from 468 brain samples (ROSMAP
methylation and expression profiling). FDR was used for
multiple testing correction. The associated DMP–gene pairs
were defined using absolute value of correlation coefficient
>0.3 and FDR < 0.05. Then, using the DMPs as index, we
connected the SNP–DMP and the DMP–gene pairs to SNP–
DMP–Gene groups.

Protein–protein interaction subnetwork related to
sex-differential DNA methylation

We used a functional supervised algorithm, functional epi-
genetic modules (FEM) [49] to identify subnetworks con-
taining genes exhibiting sex-related differential DNA
methylation in promoter regions. Using probe-level analysis
by the champ.EpiMod function, the most differentially
methylated probe was assigned to each gene, and the PPI
subnetworks which inferred the differential methylated
module was extracted.

Overrepresentation of psychiatric disorder-related
signals in sex-differential loci

To explore whether genes associated with psychiatric dis-
order show sex-differential methylation or regulation, we
tested for enrichment between sexually different DNA
methylation genes and SCZ-, ASD-, and MDD-associated
genes/loci. We completed a series of comparisons at the
SNPs, CpGs, gene, and protein levels (Fig. 1c).

For SNPs level comparisons, we investigated whether
genome-wide significant SNPs associated with SCZ,
ASD, and MDD were enriched in SNPs which regulated
DMPs (SNP–DMP pairs from meQTLs). For CpG-level
comparison, we tested whether CpG sites that were
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associated with diseases from epigenome-wide associa-
tion studies (EWAS) were enriched in DMPs. For the
gene level comparisons, we determined if genes asso-
ciated with SCZ, ASD, and MDD show sex-differential
manner. The sex-differential genes contained DMR genes,
DMP associated expression genes, sex-differential
expression genes, and genes in the sex-related PPI net-
work. The disorder-related genes came from genetic
association, differential expression and co-expression
studies. Due to data availability limitations, we studied
SCZ, ASD, and MDD separately in SNP and gene ana-
lysis, SCZ and ASD in network analysis, and SCZ only in
methylation site analysis. Fisher’s exact test was used in
the enrichment test. We defined significant enrichment as
FDR < 0.05 and odds ratio (OR) > 1.

Psychiatric disorder-related signals

The psychiatric risk gene sets or variants were collected
from publications and databases (Table S1). For SNP ana-
lysis, we used the latest GWAS results of SCZ [50], ASD
[51], and MDD [52]; for CpG analysis, we collected EWAS
of SCZ [19, 53]; for gene analysis, we collected the genes
from multiple resource which were classified into 36 cate-
gories. The gene identifiers were converted to Ensembl
Gene IDs in Gencode (GRCh38.p12) using BioMart
(https://useast.ensembl.org/index.html).

1. For ASD gene sets, using studies on genetics,
differential expression, and co-expression, we exam-
ined (1) genes with rare, de novo, loss of function or
missense single-nucleotide variants from the NP
de novo database [54]; (2) FMRP (Fragile X mental
retardation protein) binding targets [55]; (3) candidate
genes from the gene reference resource for ASD
research database, AutDB [56]; (4) differential
expression genes from a recent meta-analysis [57]
and the PsychENCODE project [58]; (5) two ASD-
associated co-expression modules in postmortem
cortex from subjects diagnosed with ASD [59], three
ASD-associated co-expression modules from a sub-
sequent RNA-seq study by Gupta et al. [60], and six
ASD-associated co-expression modules reported by
Parikshak et al. [61].

2. For SCZ gene sets, we examined (1) genes affected by
copy number variants (CNVs) [62]; (2) genes
identified by linkage and association study [63–65];
(3) genes with de novo variants from NP de novo
database [54]; (4) genes identified by convergent
functional genomics (CFG) [66]; (5) genes identified
by Sherlock integrative analysis [67, 68]; (6) genes
identified by Pascal gene-based test [67]; (7) genes
expressed differentially in SCZ [57, 58]; and (8) two

SCZ-associated co-expression modules [69].
3. For MDD gene sets, we examined only genes

expressed differentially in MDD [57].

Prioritize the sex-differential psychiatric genes

To prioritize psychiatric candidate genes that are also rela-
ted to sex bias, we completed a comprehensive integration
of the multiple-layers of sex-related genes with the multiple
sources of psychiatric-related genes (Fig. 1d). The multiple-
layers of sex-related genes contained four types: the DMR
genes, DMP-correlated genes, sex-differential expressed
genes, and sex-differential network. We identified genes as
sex-related psychiatric genes (SRPG) by counting the
recurrence of a gene in each category. We developed a
generalized score to rank disease related genes, calculated
by multiplying the number of times a gene occurred in sex-
related genes categories by the number of times the same
gene occurred in related psychiatric disease categories.

Functional enrichment

R package missMethyl [70], which can adjust for the dif-
ferent number of probes per gene (also called selection
bias), was used to identify the functionally enriched path-
ways for DMPs and DMRs. We used WebGestatle [71] and
WebGestalt-KEGG pathway [71] for functional enrichment
tests of psychiatric disorder-related genes, and SRPG,
respectively. The minimum number of Entrez gene IDs in
the category was set to 5, and the maximum was 2000.
Genome-expressed genes were used as reference. The
Benjamini–Hochberg test was used for multiple testing. We
defined significant threshold as adjusted p value <0.05.

Results

Sex-differential DNA methylated positions and
regions

We identified 20,450 DMPs significantly associated with
sex (FDR < 0.05) in DLPFC from 166,022 CpG sites
(Fig. 2, Fig. S1. Table S2). For the convenience of classi-
fication, we named the DMP with higher methylation in
females than in males as hypermethylated, and hypo-
methylated otherwise. Of those 20,450 hits, 75.39% DMPs
were mapped to autosomes, which contained 8693 hypo-
methylated DMPs (56.39% out of the 15,417 DMPs at
autosomes). There were 26.50% DMPs mapped to the X
chromosome, which contained 1530 hypomethylated DMPs
(28.23% out of the 5419 DMPs at X chromosome).

The DMPs were well-replicated in the two independent
replication datasets. In the replicate data of prefrontal
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cortex, GSE74193, 86.8% autosomes DMPs were replicated
(FDR < 0.05), 92.8% X chromosome DMPs were repli-
cated, all of them were consistent in direction with the
discovery dataset. In another replicate dataset of multiple
brain regions (GSE64509), 72.8% autosomes DMPs were
replicated (FDR < 0.05) and 98.6% of those replicated had
the same direction as the discovery dataset, while 95.9% X
chromosome DMPs were replicated and all of them had the
same direction as the discovery dataset.

There were 2428 sex-differential DMRs mapped to 2513
genes (Table S3), containing 1085 genes with only hyper-
methylated DMPs (DMR_hyper), 1351 genes with only
hypomethylated DMPs (DMR_hypo), and 77 genes with both
hypermethylated and hypomethylated DMPs (DMR_both).
The DMR genes were strongly enriched for gene sets of
neuronal function or potentially related to psychiatric diseases
such as axon guide (Benjamini–Hochberg adjusted p value
(adj.p)= 2.04e−07), MAPK (adj.p= 2.27e−05), and cal-
cium signaling (adj.p= 4.95e−05) (Table 1).

Regulatory networks related to sex-differential DNA
methylation

To comprehensively understand the regulatory network of
DNA methylation, we considered upstream genetic reg-
ulators, downstream gene expression and the PPIs which
may be influenced by methylation difference. The genetic
regulators were defined by meQTL and the downstream
gene-expression analysis was based on the correlation
between methylation and gene expression.

For upstream regulation, we used meQTLs to study the
relationship between genetic variants (SNP) and DMPs. We
started by overlapping the meQTL data of ROSMAP and

GSE74193 to obtain a list of meQTL with good reprodu-
cibility, which included 434,312 meQTL pairs (253,471
SNPs and 45,049 CpGs) that were significant (with FDR <
0.05) in both dataset. From the reproducible meQTLs, we
found 22,782 sex-related meQTLs (SNP–DMP pairs) that
included 2644 DMPs (12.9 % of the 20,450 DMPs) asso-
ciated with 18,349 SNPs (Table S4). These results indicated
that 12.9% DMPs were regulated by genetic variants.

For target gene expression, we performed correlation
analysis between methylation and gene expression in data
of DLPFC from the ROSMAP. The correlation test of
20,450 DMP with nearby genes’ expression (10 kb) showed
that 1363 DMPs had a significant correlation with 627
genes (FDR < 0.05), forming 1525 DMP–gene pairs
(Table S5). These results showed that 6.7% DMPs may
influenced the gene expression.

Fig. 2 Significance and difference of sex-differential DNA methylated
positions. a Chromosome density plot of sex-differential DNA
methylated positions, colored by the −log p value in 1MB window

size; b distribution of the effect size of DMPs (variation between male
and female average methyaltion levels). The violin plots shows two
DMP examples

Table 1 DMRs mapped genes-enriched KEGG pathways (Top 10)

Pathway name #Genes adj.p

Axon guidance 24 2.04e−07

MAPK signaling pathway 31 2.27e−05

Pathways in cancer 35 2.27e−05

Metabolic pathways 85 2.27e−05

Focal adhesion 26 2.27e−05

Regulation of actin cytoskeleton 26 4.67e−05

Endocytosis 25 4.67e−05

Calcium signaling pathway 23 4.95e−05

Amoebiasis 16 2.00e−04

Apoptosis 14 3.00e−04

Adj.P Benjamini–Hochberg adjusted p value
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We further used the DMP as a linker between SNPs and
genes, and built 3161 SNP–DMP–gene groups, containing
2054 SNPs, 276 DMPs, and 200 genes (Table S6). These
SNP–DMP–gene groups connected the genetic variants to
gene expression through sex-differential DNA methylation.
For example, rs10143703 can regulate cg04842215, and
methylation of cg04842215 correlated with expression of
CBLN3 (Fig. 3a).

We further extended regulatory network of DNA
methylation by adding PPIs. Expression of many genes may
not be influenced by sex directly, but they interact with
differently expressed genes to execute their specific func-
tions. To retrieve these related genes, we obtained 19 PPI
subnetworks (Fig. 3b, Fig. S2) that were related to our sex-
differential methylated DNA. For example, promoters of
FOXO4, FTL, BRF2, GREB3L3, and TBCB in these

Fig. 3 Sex-differential regulatory network. a Example of SNP–DMP–
Gene groups. There are 12 SNP–DMP–Gene groups in this region on
Chromosome 14: 24,895,387–24,912,111, involving two SNPs, five
DMPs and three genes. The diagram shows the location of them while
the cartoon diagram shows their relationship. The gray line represents
meQTLs with FDR < 0.05. The blue lines represent negative correla-
tion and red lines represent positive correlations. b Example of sex-
differential PPI subnetworks. Every node represents a gene. The color

of nodes represents differential methylation levels in corresponding
promoters (Yellow: hypermethylated in the female; Blue: hypo-
methylated in female). The edges were built based on the protein-
protein interaction in Pathway Common. The width of the edge is the
estimation of effect sizes. Stars represent the candidate genes (Green:
ASD candidate genes, Red: SCZ candidate genes, Purple: both ASD
and SCZ candidate genes)

Sex-differential DNA methylation and associated regulation networks in human brain implicated in the. . . 841



subnetworks exhibited hypermethylation in females
(Fig. 3b). In contrast, GADD45A, AKT2, TRO, and RNF220
exhibited hypomethylation in females. Many genes in these
subnetworks did not show sex difference, such as CEBPG,
CREB3L1, HECW1, TSPYL5, PLEKHO1, USP7, ARNT2,
NPAS4, CAT, FOXO3, FOXG1, RBL. Through the inter-
action with the genes showed sex-biased methylation, these
genes who did not show sex difference may function in a
sex different way.

Overrepresentation of psychiatric disease signals in
sex-differential loci

To learn whether psychiatric disorder-related genes show
sex-differential methylation or regulation, we tested for
enrichment between the signals related to sex-differential
methylation networks and genetic signals associated with
psychiatric disorders. Focusing on SCZ, ASD, and MDD,
we found significant enrichment at the SNP, methylation
site, gene, and network levels.

At the SNP level, we compared the SNPs which regu-
lated DMPs by meQTLs with the GWAS SNPs which
associated with SCZ, ASD and MDD. We extracted 9138
SNPs associated with SCZ at p < 5.00e−08 from PGC [72]
and found 63 SNPs that regulated DMPs. These SNPs were
more likely to regulate DMPs (63 of 9138 compared with
the background 18,349 of 8,379,106, Odds ratio for
enrichment (OR)= 3.15, p= 8.47e−15). For ASD, 93
SNPs were extracted at p < 5.00e−08 from PGC [51], but
none of them regulated DMPs. For MDD, we extracted 912
SNPs associated with MDD at p < 5.00e−08. We did not
observe enrichment of MDD-associated SNPs in those that
regulate DMPs. However, one SNP, rs61990288, which
was associated with MDD, was also a meQTL SNP that
regulated a DMP.

At the CpG level, we compared our sex-related DMPs
with the EWAS results of Jaffe et al. [19] (n= 750 sam-
ples), who tested SCZ brains. Using an EWAS p value less
than 5.00e−05 as the cut-off, we extracted 1059 CpG loci
associated with SCZ. Among these 1059 CpG sites, 21
CpGs that was associated with SCZ and show sex-
differential methylation. We did not find enrichment of
sex-differential DMPs (OR= 0.16, p= 1.68e−35). We also
used SCZ EWAS results from Hannon et al. [53], who
quantified DNA methylation from blood samples. The
DMPs were not enriched for CpGs associated with SCZ
(OR= 0.01, enrichment p= 4.39e−05), but 81 CpGs
was associated with SCZ and show sex-differential
methylation.

To determine whether genes associated with ASD,
SCZ, and MDD show sex-related differential methylation,
we collected disease candidate genes that covered

genetics, differential expression, and co-expression stu-
dies (Fig. 4a, Table S7). For ASD-related gene analysis,
we observed significant enrichment of DMR genes with
ASD-related risk genes with loss of function de novo
variants (OR= 1.77, p= 5.44e−3), FMRP gene set
(OR= 1.71, p= 3.00e−9) and candidate genes from
AutDB (OR= 2.86, p = 2.84e−10), but genes with
missense de novo mutations were not enriched in DMR
genes (OR= 1.34, p= 5.37e−2). DMR genes were also
enriched in ASD-related differentially expressed gene sets
and co-expression modules. For SCZ-related gene analy-
sis, we observed significant enrichment of DMR genes
with missense de novo mutation genes, loss of function
de novo mutation genes, differentially expressed SCZ
genes, and also SCZ-associated co-expression genes.
However, in contrast with ASD, the DMR genes were not
enriched in genes identified by linkage [63–65], Sherlock
[67, 68], Pascal [67], and CFG [66] in SCZ. For MDD, we
did not find enrichment of DMR genes with differentially
expressed or co-expressed genes.

To take the direction of the DMR into account, we tested
for enrichment of disease-related genes in the DMR_hyper
genes, DMR_hypo genes and DMR_both genes (Fig. 4b,
Table S7). We found upregulated different expression gene
sets and upregulated co-expression gene sets in ASD were
enriched in DMR_hyper genes, whereas downregulated
different expression gene sets and downregulated co-
expression genes sets in ASD were enriched in
DMR_hypo genes. In contrast, in gene sets of MDD, we
found downregulated differential expression genes enriched
in DMR_hyper genes.

We also tested the enrichment of DMP-correlated
expression genes and sex-differential expressed genes
(Table S7, Fig. 4a) against genes associated with ASD,
SCZ, and MDD. By clustering analysis, we found DMP-
correlated genes had a similar enrichment pattern as DMR
genes, but not the sex-differential expressed genes.

While some sex-differential methylated genes are also
risk genes, some other risk genes may interact with sex-
differential genes through protein networks. Differential
methylation can impact functions of both types of genes
at the system level. The ASD- and SCZ-related
genes were mapped to the PPI subnetworks that
exhibit sex-related differential DNA methylation. The
sex-differential PPI subnetworks connected the sex-
differential genes to psychiatric disorder candidate
genes. For example, the sex-differential network—with
FOXO4 as a hub gene, a sex-differential gene, interacts
with 29 other genes and 20 of them were ASD-related
genes (Fig. 3b). Even though they were not sex-
differential methylated genes, their functions were
affected by their sex-dependent patterns.
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Prioritize the psychiatric risk genes that involve sex
bias

Since enrichment of sex-related genes was observed among
psychiatric disorder-associated genes, we attempted to
identify specific risk genes that are under sex-dependent
regulation. We defined SRPGs as genes that were associated
with sex at least once and associated with at least one of the
psychiatric disorders (SCZ, MDD, or ASD) (Table S10).
For example, complexin/synaphin gene, CPLX1 was a
DMR gene, and its expression level correlated with a DMP.
CPLX1 was related with ASD and SCZ from multiple stu-
dies involving genetic variants [55] and co-expression
changes in postmortem brain of ASD patients [57, 59, 60].
Therefore, CPLX1 was a SRPG.

Of the 13,055 studied genes, we identified 2080 SRPGs
(1498 ASD-related, 1349 SCZ-related, and 51 MDD-rela-
ted). These genes were subgroup of psychiatric disorder
genes which enriched in synapse and signaling pathways
(Table 2, Table S11). Of the 1498 SPRGs related to ASD,
98 genes were associated with sex-differential features and
ASD-associated features in several analyses. The top ten
ranking of SPRGs for ASD were CPLX1, HEBP2, SYP,

CD99L2, ZC3HAV1, SAT1, HECW1, TRO, CD40, STS, and
NRXN3. Among the 1349 SCZ-related SRPGs, 55 genes

Table 2 Prioritized genes enriched KEGG pathway

Pathway name #Genes adj.p

Dopaminergic synapse 16 2.29e−04

Glutamatergic synapse 13 2.99e−03

cAMP signaling pathway 17 5.33e−03

Retrograde endocannabinoid signaling 11 1.00e−02

Circadian entrainment 10 2.34e−02

Amphetamine addiction 8 2.77e−02

Calcium signaling pathway 14 2.77e−02

Chagas disease (American trypanosomiasis) 10 2.77e−02

GABAergic synapse 9 2.89e−02

MAPK signaling pathway 17 2.89e−02

Serotonergic synapse 10 3.80e−02

FoxO signaling pathway 11 3.80e−02

Alcoholism 13 4.35e−02

AGE-RAGE signaling pathway in diabetic
complications

9 4.96e−02

Adj.p Benjamini–Hochberg adjusted p value

Fig. 4 A compressive overrepresentation of psychiatric candidate gene
sets in sex-biased genes. a Overrepresentation of psychiatric candidate
gene sets in DMR genes, DMP-correlated expressed genes, differen-
tially expressed genes, and PPI network genes, clustered by the
enrichment value. b Overrepresentation of psychiatric candidate gene
sets in DMR genes and subset of DMR genes. The x-axis shows 34

gene sets divided based on the psychiatric disorder and labeled by
type; the y-axis shows the DMR genes, DMP-correlated expressed
genes and differentially expressed genes. The color of the box shows
the odds ratio for enrichment (red for enrichment, blue for deletion).
“*” indicates enrichment is statistically significant (p < 0.05), “**”
indicates p < 0.001
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were supported by multiple lines of disease risk and dif-
ferential methylation data. The genes ANOS1, MAGI2,
CHRDL1, GNG12, MSL3, SMC1A, ITM2A, PLS3, CDK16,
ZC3HAV1, and UBTF were ranked in the top ten. Eight
genes (AR, WWC3, NOS1, PAX8, GRB7, SYTL1, CLIC6,
BEGAIN) of the MDD-related SRPGs were supported by
multiple data. Functional enrichment tests showed that the
SPRGS with more than two associations with psychiatric
disease and sexual differences (n= 653) were enriched
in synapse-related pathways like dopaminergic synapse
(adj.p= 2.3e−4), glutamatergic synapse (adj.p= 2.9e−4),
GABAergic synapse (adj.p= 2.9e−2), and serotonergic
synapse (adj.p= 3.8e−2). These SPRGs were also enriched
in signaling pathways such as the cAMP (adj.p= 5.3e−3),
calcium (adj.p= 2.8e−2), MAPK (adj.p= 2.9e−2), and
FoxO (adj.p= 3.8e−2) (Table 2).

Discussion

We identified sex-differential DNA methylation and reg-
ulatory networks in one of the largest studies of postmortem
human brain tissue to date. Thousands of sex-differential
DMPs and DMRs were identified and replicated. Reg-
ulatory networks that connect the DMPs with SNPs, gene
expression, and PPI were built up. Enrichment of psychia-
tric disease-associated genes in DMPs, DMRs, and net-
works was detected.

To assess the consistency between our findings and prior
results on sex-differential DNA methylation, we compared
DMPs in the current analysis with five relevant publications
(Table 3). These studies differed from ours either in DNA
methylation analysis platform (27K in McCarthy et al.
[26]), tissue types (cord blood in Yousefi et al. [20] and
whole blood in Singmann et al. [22]), or subjects’ age range
(fetal brain in Spiers et al.). The sample size in the current
study was much larger than in previous studies. Our results
replicated from 10.9 to 45.3% of the probes that passed QC.
Totally, 68.4% of our DMPs results are novel findings.
These novel findings were based on our strict criteria that
contained only the high-quality probes [39] and controlled
for potential artifacts such as batch effects, position effects,
and cell-type component.

Our data show that sex-differential genes are enriched in
pathways known to be important in neurons including axon
guidance, MAPK signaling, and calcium signaling. These
pathways have been previously suggested as being involved
in psychiatric risks. For example, axon guidance pathways
strongly influence human speech and language, and deficits
in language and communication are hallmarks of ASD [73].
The MAPK singling pathway is reported to determine
depression-like behavior and anxiety [74], which may be
contribute to the different prevalence between males and

females for MDD. Calcium signaling pathways regulate
many neural functions involving the generation of brain
rhythms, information processing and the changes in
synaptic plasticity [75]. Dysregulation of calcium signaling
pathways has been implicated in the development of psy-
chiatric diseases such as SCZ [75]. The discovery that sex-
differential genes are enriched in these important pathways
may help us to better understand the sex-related mechan-
isms underlying psychiatric disorders.

Our study curated a regulatory system related to sex-
differential DNA methylation, which supports our first
hypothesis that sex-differences exists in both DNA methy-
lation and its regulatory network. For each of the DMPs,
putative upstream genetic regulators and downstream target
genes were identified by connecting DMPs with meQTL,
genes, and PPI. Therefore, a more complete biological
system that either contributes to or is affected by sex-
differences come together for their potential involvement to
disease risks.

We conducted a comprehensive comparison between the
sex-differential methylation regulation system and psychia-
tric disorder risk factors, providing support for our second
hypothesis that psychiatric disorder-related genes have dif-
ferent methylation levels between males and females. We
took advantage of numerous types of data including GWAS,
rare variants studies, EWAS, differential expression and co-
expression studies to capture different aspects of genetic,
environmental or the genetic–environmental interaction
effects and provide new insights into the disease etiology.
We found different methylation regulation systems between
male and female enriched in these different types of psy-
chiatric risk factors.

We found common variants that regulate DMPs were
enriched in SCZ GWAS signals, which expands the mul-
tiple liability model. The multiple liability model assumes
the same genetic variants have the same effect on males and
females. Our study demonstrated that the same genetic
variants have different influences on males and females in
DNA methylation. For example, GWAS signals of SCZ
such as rs4702 and rs12332385, can regulate sex-related
DMPs through meQTL. Therefore, despite only calculating
the accumulation of risk alleles in the multiple liability
model, both the number of risk alleles and the effect size
should be included in the model to explain the sex-bias
feature of the disorders. Beside the common variants from
GWAS studies, we observed that sex-differential DMR
genes were enriched in de novo mutation genes related to
SCZ and ASD, which provides evidence that the rare var-
iant genes contribute to SCZ and ASD and show a sex-
differential methylated pattern in DLPFC. We identified
EWAS signals showing sex-differential methylation, sug-
gesting the baseline methylation level of these EWAS sig-
nals of SCZ is different between males and females. In the
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downstream genes, we found DMP-correlated genes enri-
ched in candidate genes of ASD, SCZ, and MDD. For
example, we found significant enrichment of differentially
expressed genes in MDD enriched in sex-related
DMR_hyper genes. Four CpG sites (cg22466678,
cg15296664, and cg08802841 at intergenic region,
cg20722088 at 3′UTR) on DUSP6 genes show hypo-
methylation in female. The DUSP6 has been reported to be
a female-specific hub gene which influenced stress sus-
ceptibility in females [76].

One of the most interesting findings in our study is from
the comparison of sex-differential methylation and expres-
sion results with ASD risk genes. We observed enrichment
of sex-differential methylation (DMR genes and DMP-
correlated genes) in both ASD-risk genes and ASD-related
pathways, suggesting the ASD-risk genes may contribute to
the sex difference of the disease through DNA methylation
but not gene expression. This result expanded the results of
Werling et al. [6], who reported that an ASD-related path-
way, but not the ASD-risk genes, were enriched in sex-
differential expressed genes. ASD-related differentially
expressed genes and co-expressed genes, not the ASD-risk
genes that had genetic variants, were enriched in sex-
differential expressed genes in the current study. However,
we observed enrichment of sex-differential methylation
(DMR genes and DMP-correlated genes) in both ASD-risk
genes and ASD-related pathways. One of the possible
explanations is that the DNA methylation as the upstream
regulator is more sensitive than gene expression [32]. We
found the DMP-correlated genes are more likely to be dif-
ferentially expressed, which provided an in-directed support
to the explanation. Therefore, comprehensive analyses that
combine methylation and gene expression are crucial to
reach a better understanding of complex diseases and their
sex differences.

We found ASD loss of function de novo genes are
enriched for DMR genes, while genes with missense
de novo mutation are not enriched for DMR genes.
Although both loss of function de novo genes and missense
de novo mutation are associated with ASD, these different
enrichment result remain us to consider the genic intoler-
ance. Genic intolerance is a quantitative assessment of how

well genes tolerate functional genetic variation on a
genome-wide scale [77]. Genes with de novo mutations in
ASD are generally intolerant genes, having important
function. It is possible that methylation levels are strictly
regulated in such intolerant genes, which result in smaller
variation across individuals and cause the statistically sig-
nificant sex difference. Through the gene intolerant analy-
sis, we compared the residual variation intolerance score
(RVIS) of DMR genes and non-DMR genes, and we found
the DMR genes have a significant lower mean value of
RVIS score (mean DMR=−0.13, mean non-DMR= 0.01,
p= 1.754e−10), which means the DMR genes are intoler-
ant genes with important functions (Supplementary
method).

Most notably, we found upregulated genes in ASD were
enriched in hypermethylated DMR genes in females.
Hypermethylation may result in low-gene expression level,
which means compare to males, females have a lower
expression level of these upregulated genes in ASD. In
other words, the relative amount of gene change required
for female to reach ASD diagnosis is larger than
males, which can explain the different prevalence between
male and female. In the contrast, the downregulated
genes in MDD were enriched in hypermethylated genes in
MDD, which means for the females the relative change is
smaller than males to reach the MDD diagnosis. These
results provide compelling evidence for the multifactorial
model which hypothesis the sex-specific genetic and
environmental factors in the sex with lower incidence shift
its’ total liability distribution away from the diagnostic
threshold.

We prioritized psychiatric genes related to sex-bias and
highlighted some important pathways which were sex-
differential and related to psychiatric disorders, including
important psychiatric disease candidate genes like NRXN1,
NRXN2, NRXN3, PDE4A, SHANK2. Our study suggests
that the synapse-related pathway and several signaling
pathways differ by sex and may be disrupted in psychiatric
disorders. For example, dopaminergic, glutamatergic, and
GABAergic synapse, all suspected of being involved in
psychiatric disorders, all differ between male and female.
Studies targeting these genes and pathways should take sex

Table 3 Comparison of DMPs in autosome with other published studies

Study Sample size Population Tissue Platform # Of
AUDMPS

# Of AUDMPS
in PQC

# Of AUDMPS
Replicated (%)

McCarthy et al. [26] 6795 – Multiple types 27K 235 75 34 (45.3%)

Xu et al. [25] 46 Caucasian Prefrontal cortex 450K 614 266 79 (29.7%)

Spiers et al. [21] 179 Caucasian Fetal brain 450K 525 223 85 (36.5%)

Yousefi et al. [20] 111 Mexican-
American

Umbilical cord
blood

450K 3031 1236 301 (24.3%)

Singmann et al. [22] 1799 Caucasian Whole blood 450K 1178 512 56 (10.9%)
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into account in design and analysis. Studies of these genes
and pathways may reveal the biology that drives sex-related
features of the disorders.

The current study has several limitations. DNA methy-
lation exhibits spatiotemporal patterns that cannot be fully
captured. Our analyses utilized gene methylation and
expression data from the human adult prefrontal cortex.
Other brain regions known to be robustly sex-differential
were not represented in our data sets, such as the hypo-
thalamic nuclei. The current study used bulk tissues,
not specific cell types, and expression of genes related to
psychiatric disorders may vary among brain cell types. Cell-
type specific studies based on the single-cell or deconvo-
lutional data should be explored in the future. The majority
of our discovery samples were from an older population that
was post-reproductive age. This age range does not coincide
with the typical age of onset for the major psychiatric dis-
orders. Samples from children, adolescent, young adults
need to be explored in the future.
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