Introduction

To ensure that paediatric healthcare professionals adequately support the health and well-being of children and adolescents, it is important that they gain and provide insight into both the physical and mental well-being of their patients. For instance, it may help to better understand how mental and somatic health problems/symptoms are related and interact.1 Furthermore, by gaining insight into both the physical and mental well-being of patients, treatment and functional outcomes can be improved2 and optimal care using a holistic perspective can be provided.

Historically, healthcare providers have attempted to gain insight into well-being through (retrospective) paper-and-pencil questionnaires, but there are several disadvantages related to this method of data-collection. For instance, questionnaires are affected by recall bias3 and they do not enable scholars and clinicians to efficiently examine the context in which the investigated feelings, thoughts or behaviour take place in real-time.4

With the rise of technological possibilities in recent years, the number of studies using the Experience Sampling Method (ESM), also called Ecological Momentary Assessment (EMA) or Ambulatory Assessment (AA), have increased both in scientific studies and in clinical practice.5,6 In an ESM study, participants report on their thoughts, feelings, symptoms and/or behaviour in their daily life,7 typically during multiple (random) times per day for several days or weeks.3 Questions may include: Where are you right now? Do you feel tired right now? and Are you alone? The intensive longitudinal data resulting from this data-collection method, may enable both researchers and clinicians4 to answer questions on the dynamics of psychological, behavioural and/or medical processes as they occur.8

Experience Sampling may have several benefits. First, as ESM is highly suited for inquiring how participants feel, behave and think in the actual context,3 it allows researchers and clinicians to relate symptoms, mental well-being and behaviour to contextual factors, such as someone’s whereabouts or their company. Second, ESM may be beneficial for investigating specific age groups such as adolescents.6 As adolescents spent on average up to 3 h and 45 min per day on their smartphone,9 using applications on their smartphone (ESM apps) may be a convenient way to reach this age group and gather data at different moments during their daily lives. Third, ESM apps provide clinicians and researchers with the ability to provide personalised feedback to their patients.10 Or, the ESM apps may provide direct feedback to participants to enable self-monitoring to alleviate symptoms of anxiety or depression.11,12

While ESM is increasingly popular in the field of (clinical) psychology and psychiatry,13,14 it is also being used in children and adolescents with a chronic somatic illness.15,16 For instance, ESM has been combined with Bluetooth sensors on asthma inhalers17 or with data from blood glucose meters in adolescents with diabetes.18 Since the use of ESM in a paediatric patient population with a chronic somatic illness might have important clinical implications, it is crucial to have an overview on the use of ESM in this particular population. Therefore, this preregistered systematic review aimed to provide an overview of how ESM is used in paediatric healthcare and research. Our main research question was: In which way is ESM used to monitor emotional well-being, somatic health, fatigue and pain of children and adolescents with a chronic somatic illness? More specifically, we sought to answer the following questions: (1) To what purpose do studies deploy ESM? (2) In what way is ESM deployed (i.e., on what device, with which frequency and how long)? and (3) What is the quality of the ESM data and the reporting of ESM data?

Methods

This article was written in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement19 and the AMSTAR 2 checklist,20 and was registered prospectively in the international prospective register of systematic reviews, PROSPERO, registration number CRD42022268954.

Search strategy

A broad search focusing on the use of ESM in children and adolescents with a chronic somatic illness was conducted by a research librarian from the Erasmus Medical Centre. The search was first conducted on the 19th of July 2021 and updated on the 21st of July 2022. The following databases were searched from inception; Embase, Medline ALL, Web of Science Core Collection, Cochrane Central Register of Controlled Trials and Google Scholar. The terms included in the search were related to Experience Sampling Method, Ecological Momentary Assessment, children, adolescents and paediatrics. The full search can be found in the Supplementary Materials (S1).

Eligibility criteria

Peer-reviewed studies were eligible if they included children and adolescents (0–25 years of age) with a chronic somatic illness. Chronic somatic illnesses were defined by one or more of the following characteristics: (a) the condition was permanent, (b) left residual disability, (c) was caused by nonreversible pathological alteration, (d) required special training of the patient for rehabilitation or (e) may be expected to require a long period of supervision, observation or care.21 In addition, studies were only included if they used ESM or EMA and collected data regarding; (a) mental or psychosocial wellbeing (e.g., affective wellbeing, anxiety, happiness, social functioning, school performance), (b) (psychosomatic) symptoms (e.g., fatigue or pain) or (c) somatic health (e.g., medication use, disease activity). Studies were excluded if they (a) reported no original data (e.g., case reports, conference abstracts, n = 1 studies or systematic reviews), (b) used daily dairies or had less than two measurements a day, as these were not deemed to be prototypical ESM22 or (c) the article was not written in English. When multiple papers from the same trial were retrieved, only the earliest paper was included in the review.

Study selection

Studies were selected if they met the inclusion criteria. Two rounds were used to screen the title and abstract. Four reviewers (MA, KB, ED and AS) independently assessed the title and abstract of the articles retrieved in the first search in 2021. The average interrater agreement was 96.82%. Two reviewers (MvD and AS) independently assessed the title and abstract of the papers retrieved in the updated search in July 2022. The average interrater agreement was 94.88%. Subsequently, three reviewers independently assessed the full text articles for eligibility (KB, MvD and AS). The average interrater agreement was 87.41%. In all rounds, consensus was used to resolve discrepancies.

Data extraction

Two researchers (MvD and AS) performed data-extraction of selected articles. Both researchers extracted data from 50% of selected articles and double-checked the data-extraction for the other 50%. The following information was extracted: general information about the sample (i.e., age, sex, sample size and medical diagnosis), as well as information about the ESM method (e.g., device used, prompt design, duration, ESM intervals, number of prompts, items per assessment and questionnaires) and ESM quality (e.g., compliance rate, timeframe for responding, user experience, reliability).

Quality and risk of bias

Van Roekel et al. published a checklist for good practices when designing and reporting on ambulatory assessment, which was used for quality and risk of bias assessment. This checklist focusses on participants, procedure (including technology, design of study, participant inclusion and monitoring protocol and compliance) and materials. The checklist was used to assess the quality and risk of bias, with each item rated as 1, 0.5 or 0, or cannot determine/not applicable. Scores were converted to percentages. Papers rated >80% were considered good quality, 60–80% was considered fair quality and <60% was considered poor quality. Quality assessment was done by two reviewers (MvD and AS).

Data synthesis

Summary statistics were created for the average sample size, sex ratio and average age. When means and standard deviations were not available in the original paper, medians were transformed to means and standard deviations as described by Shi et al.23 The final data extraction sheets, reasons for exclusion of full text articles and the quality and risk of bias assessment are available on the Open Science Framework (OSF): https://tinyurl.com/2p8w35ps.

Results

Study selection

The literature search yielded 3005 unique records, of which 2862 were excluded based on the title and abstract. Subsequently, 143 records were retrieved for full-text screening, of which 47 were included in the current systematic review. The complete flowchart is shown in Fig. 1. These 47 papers described 48 studies, with a total of 1726 participants. One paper did not report a sample size.24 The mean sample size per study was 36.72 participants (range 10 to 88). The weighted mean age of all participants was 14.65 (SD = 2.24) and 23.76% was male. The most common diagnoses studied were asthma (n = 9), overweight and/or obesity (n = 9) and type 1 diabetes (n = 7).

Fig. 1: Flow chart of the selection process.
figure 1

Each box represents a step in the literature screening process. The left column represents the number of papers screened at each step, and the right side states the number of documents excluded and the reasons for exclusion.

Purpose of ESM studies

Results of the selected studies are shown in Table 1. The most common purpose of using ESM in children with a chronic illness was to understand what factors influence symptoms and how symptoms influence each other (n = 25 studies). These factors may be external, such as relating weather conditions to headaches,25 or internal, such as studying the relationship between sleep, pain and daily functioning.26 Other common purposes were to study the feasibility of using ESM within a certain patient group (n = 9 studies), using ESM to study the feasibility of using an app or intervention for a specific patient group (n = 8) or using ESM to study how symptoms of a disease fluctuate over time (n = 6). Less common purposes were to study medication adherence (n = 5), study social functioning within the context of chronic illness (n = 3) or creating self-awareness in participants (n = 1).

Table 1 Purpose of included studies.

Studies used different primary outcome measures. Most studies (n = 17) looked at the feasibility of ESM, either as part of an app or intervention or as a stand-alone methodology. Other studies (n = 10) looked at medical outcomes such as pain intensity24 or lung functioning,27 or at psychological outcomes (n = 7) such as social inclusion28 and depressive symptoms.18 A complete overview is shown in Table 1.

There were no studies using ESM as independent application for patient self-monitoring. Four out of 48 studies reported involving a healthcare provider in the ESM protocol and results.29,30,31,32 In two of these studies, the healthcare providers were involved in choosing the content of the micro-questionnaires. Three of the four studies reported that the healthcare provider discussed the results of the ESM with the patient and caregiver. One study reported that the data was available for the healthcare professional, but does not mention the data being discussed with the patient. The remaining studies do not mention the involvement of the healthcare provider, except for Heathcote et al.,33 where a visit to the outpatient clinic was part of protocol. However, this visit did not include discussing ESM results.

Characteristics of ESM

See Table 2 for an overview of technical and design characteristics of the ESM.

Table 2 Overview of ESM uses in different studies.

Software/Devices

The majority of studies (n = 24) reported using either a loaned or owned smartphone to disseminate the ESM. An additional five studies did not provide clarity on whether they used a smartphone or other (mobile) phone. Some other studies reported using a personal digital assistant. Most of these studies used a Palm device (n = 11), but Royal Brand (n = 1) has also been used. As not all studies reported their time frame of data collection, there was not enough information to determine whether these were primarily older studies. Fifteen studies combined the ESM device with a wearable, such as blood glucose meters, Bluetooth asthma inhaler caps or accelerometers. The majority of the studies using a wearable combined this with ESM via a smartphone application.

Sampling scheme

The duration of the ESM studies ranged from 13 h to two months, with the majority of the studies (70.83%) using ESM for 14 days or less (median = 14, IQR 7; 15.75). The number of prompts per day ranged from 1 to 16 promptsa, with a mean of 4.3 prompts per day and a mean of 54.37 prompts over the course of the study (range 12 to 147). Ten studies had different numbers of prompts for different days, often participants received more prompts during the weekend than during weekdays.

Micro-questionnaires

Most studies included around 10–20 items, with a range of 4 to 61 items. However, almost half of the studies (n = 24) did not report the number of items they included in their ESM prompts.

Compliance and incentives

To ensure sufficient compliance (i.e., number of answered questionnaires), half of the studies (47.92%) motivated participants with financial means or through study credits (2.08%). Most studies with a financial incentive used different incentives based on the compliance rate or completed research visit. For instance, participants received money at the start of the study and at the final research visit.29,34,35 Other studies gave participants money if the compliance was at least 70%,36 75%,37 80%,32,38 85%39 or 90%.40 A third approach was to add a small amount of money (e.g., $0.25 to $2.5025,26,33,41) to the total incentive for each ESM measure completed. Nineteen studies did not report whether their participants received an incentive for participating.

Personalised feedback

Eight studies reported giving participants insight into their ESM results. This feedback was provided by a healthcare provider32 or researcher,18 but most often through a personalised report,15,30,31,38,42,43 which was sometimes discussed by a healthcare provider f.e.31

Quality of ESM data and studies

The quality of the ESM studies was determined using the checklist for good practice when reporting on ambulatory assessment.6 The results are shown in Table 3. Overall, 27 studies (56.25%) were deemed to be of poor quality. The remaining 21 studies (43.75%) were of fair quality. No studies were of good quality.

Table 3 Quality assessment of included studies.

Power

Table 1 shows most studies had small sample sizes (M = 36.72 participants), with sample sizes ranging from 10 to 88 participants. Twelve studies (25.00%) included 20 participants or less. Notably, only four studies performed an a priori power analysis, using computer programs to generate either minimum sample sizes with moderate regression coefficients24,25,30 or multi-level Monte Carlo simulations.41 One study based their sample size on the minimum recommended sample size for multilevel designs by Maas and Hox,44 instead of performing a formal statistical power analysis.40 However, eight studies were feasibility studies. A power analysis may not be applicable to those studies.

Reporting

Several studies lacked sufficient details in the methods section to replicate the study. For instance, two studies did not report on the software nor the devices used to gather the ESM data.45,46 An additional 11 studies reported on the devices used during the study but did not report which software was used.18,25,34,39,41,46,47,48,49,50

Most studies (95.83%) described the prompt design, reporting on both intervals (e.g., random intervals or fixed intervals) and/or prompt contingent (e.g., signal-contingent or event-contingent). Sixteen out of 48 studies reported on the response window available for participants to complete the ESM after being given the prompt.

About half of the studies (n = 22) also reported a monitoring scheme, detailing when and how many reminders participants received to ensure compliance. Most studies used automated reminders,29 contacted the participant at least once a week24,34,41,42,43,51,52,53,54 or contacted participants when compliance rates declined.17,26,35,55 A few studies combined automated reminders with contacting participants.30,38

Four studies reported problems during data collection (mostly related to technical issues). None of these studies reported subsequent adjustments to protocol.31,51,52,53 The other studies (n = 44) reported no problems or technical issues during data collection. It is unclear whether this indicates that there were no problems or whether problems were not reported.

Compliance

The majority of the studies (39 out of 48/81%) reported the overall compliance. Table 2 shows that the overall compliances range from 20% to 95% (M = 69.77, SD = 14.87). Some studies (n = 13) reported excluding participants based on compliance score. Six studies reported a compliance cut off score. These cut off scores varied between ≥25%,26,56 or ≥33%42,54,57 or ≥50%.52 In addition, two studies omitted ESM data that could not be matched to the data points of a wearable.55,58 Of these 13 studies, three studies reported recalibrating the overall compliance after exclusion of participants.42,55,59 Other studies (n = 10) only included questionnaires completed within a certain time window. The remaining 25 studies did not provide clarity on the overall compliance. Notably, only five studies reported reasons for noncompliance, such as technical problems, illness or missed time windows. Fifteen studies provided some insight into compliance reasons by reporting on (non)compliance patterns. Two studies reported compliance was higher for the morning questionnaires and on the weekend days.30,50

User experience

Twelve out of 48 studies reported on user experience, typically based on satisfaction with the study procedures and willingness to participate again. Most studies used either a questionnaire or brief interview. Four studies indicated that the majority of participants thought ESM was easy to use and gave a positive recommendation for peers.31,32,33,43

Materials

The last three items of the checklist for good practice assess the materials used in the studies. Almost all studies (n = 43) reported on scale construction and transformation. Over half of these studies (n = 25) also reported on the psychometric properties of the used scales. Five studies did not report on scale construction and transformation, nor on the psychometric properties of the scale. Lastly, thirty-five articles specified whether the participants answered the ESM questions about their current state (in-the-moment) or about the past hour(s).

Discussion

Whereas ESM is booming in clinical psychology, psychiatry and other fields of study (e.g., communication sciences, organisational psychology),5,6 relatively little is known about its application in paediatrics, despite showing promise for the field. Hence, this preregistered systematic review aimed to provide an overview of the application of ESM in paediatrics. More specifically, we aimed to study the purposes of the studies using ESM, the way ESM was deployed and the quality of the ESM studies as well as their reporting. A systematic literature search yielded 47 papers, describing 48 studies.

Almost all studies had an aim that was primarily related to doing research. Most often, the purpose was to investigate what factors influenced medical or psychological symptoms and how symptoms influenced each other. With regards to using ESM to provide personalised feedback, only one study used ESM to create self-awareness in participants and eight studies gave participants insight into their ESM results, of which five without professional guidance or support. Four studies involved the healthcare professional in the ESM methodology or results. Previous ESM applications in psychology provided personalised feedback to participants,60 so they may change their behaviour61 or to alleviate psychological symptoms.62 Similar applications could also be used in paediatrics to benefit both the healthcare provider and the patient or caregiver. For instance, monitoring of symptoms or medication adherence may provide the healthcare provider with useful insights for monitoring wellbeing and treatment adherence,63 as well as insight into the influence of contextual factors on the physical and mental well-being. The patient and caregiver may also gain insight and adopt their behaviour according to the feedback provided. Using ESM in this way also aligns with recent developments in paediatrics, such as value-based healthcare and shared decision making.64 In addition, by using ESM in routine outcome monitoring, more positive health outcomes and a subsequent reduction in healthcare costs may be realised.65,66

In comparison to other fields of study, the field of ESM in paediatrics seems in its infancy, both in terms of the number of studies as in terms of quality indicators. Most existing studies in paediatrics were much smaller than typical ESM studies on adolescents in other fields of study.6 In our review, the mean sample size was 36.72 and the average number of assessments was 54.37. Whether this was sufficient is an urgent question, as the topic of how precise estimates from ESM data are is still under investigation by methodologists. However, it may less feasible to recruit large samples of adolescents with a chronic illness into studies compared to large samples of adolescents from the general population. As not all adolescents are diagnosed with a chronic illness, the group of potential participants is much smaller and large study samples may thus be harder to achieve.

With regards to the quality of reporting, ESM research in paediatrics may benefit from developments in other domains. Many of the selected studies lacked sufficient details to replicate work (e.g., reasons for noncompliance or patterns of (non)compliance). Although the study design was often well-described, studies often omitted reporting the response window, the amount of items per assessment or the monitoring scheme. Hence, we recommend that future research make use of the checklist published by van Roekel et al.6 for reporting their findings and may also benefit from a strong Open Science Movement with regards to good practices for ESM.67

This study also has several strengths and limitations. This is the first overview of how ESM is applied in paediatrics. A particular strength is its preregistered design with a thorough literature search. A first limitation is that the checklist used to assess quality and risk of bias assessment was developed primarily for studies within the field of psychology. Hence, the quality of reporting relating the chronic illness itself was not assessed. A second limitation is that our search was tailored primarily to chronic illness and ESM, but not towards wearables. This review may not provide a complete overview of the application of wearables in paediatrics.

This overview can serve as inspiration for clinicians working with children with a chronic illness. ESM can be embedded in the clinical practice in many ways, for instance by combining ESM with data from wearables (e.g., heart rate monitors or blood glucose meters). Another possibility is to provide feedback to patients and parents either by the healthcare provider themselves, or through personalised reports. In terms of the duration of ESM, this systematic review showed there are many possible durations. Another option that was not highlighted in this review, but has been previously suggested is to incorporate ESM throughout various stages of the treatment,68 for instance by starting with a few days ESM at baseline and doing a follow-up period after six weeks.

Future research using ESM for either scientific or clinical purposes can be strengthened by learning from other domains. For instance, studies should conduct a priori power analyses (e.g., using Mplus or PowerAnalysisIL), and items and questionnaires (including branching and dependencies) could be shared through open science, in repositories such as the ESM item repository.69 Following guidelines for reporting ESM studies, authors should provide stronger rationales for their sample schemes and frequencies to enable replication and faster progress in paediatric research and practice. In addition, future research should establish whether the use of ESM in clinical practice may lead to a reduction of healthcare costs.

In conclusion, there are many different applications of ESM in paediatrics. Although the reporting of many papers can be improved, these applications may be of inspiration to other researchers and healthcare professionals. Despite the field of ESM in paediatrics being in its infancy, ESM can be embedded into the healthcare process in a myriad of ways. Incorporating ESM into healthcare could also ensure a reduction in healthcare costs by enhancing treatment adherence through personal feedback, or by allowing clinicians to provide early interventions based on ESM responses. However, this should be investigated in future studies.