Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Development of PI3Kγ selective inhibitors: the strategies and application

Abstract

The γ isoform of Class I PI3Ks (PI3Kγ) is primarily found in leukocytes and is essential for the function of myeloid cells, as it regulates the migration, differentiation, and activation of myeloid-lineage immune cells. Thus, PI3Kγ has been identified as a promising drug target for the treatment of inflammation, autoimmune disease, and immuno-oncology. Due to the high incidence of serious adverse events (AEs) associated with PI3K inhibitors, in the development of PI3Kγ inhibitors, isoform selectivity was deemed crucial. In this review, an overview of the development of PI3Kγ selective inhibitors in the past years is provided. The isoform selectivity of related drugs was achieved by different strategies, including inducing a specificity pocket by a propeller-shape structure, targeting steric differences in the solvent channel, and modulating the conformation of the Asp-Phe-Gly DFG motif, which have been demonstrated feasible by several successful cases. The insights in this manuscript may provide a potential direction for rational drug design and accelerate the discovery of PI3Kγ selective inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The structural biology of PI3Kγ.
Fig. 2
Fig. 3: IPI-549 (5), the first PI3Kγ-selective inhibitor developed by Infinity Pharmaceuticals.
Fig. 4
Fig. 5: The comparison between the binding modes of PIK-93 and compound 6.
Fig. 6: X-ray structure of compound 7 bound to PI3Kγ (PDB: 4PS3).
Fig. 7
Fig. 8
Fig. 9: Docking model for compound 9 bound to PI3Kγ.
Fig. 10
Fig. 11: Mechanistic hypothesis for PI3Kγ isoform selectivity of AZ series compounds.
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Thorpe LM, Yuzugullu H, Zhao JJ. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer. 2015;15:7–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Ma X, Hu Y. Targeting PI3K/Akt/mTOR cascade: the medicinal potential, updatedresearch highlights and challenges ahead. Curr Med Chem. 2013;20:2991–3010.

    Article  PubMed  CAS  Google Scholar 

  3. Jr PJ, Janku, F. Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacol Ther. 2014;142:164–75.

  4. Yap TA, Bjerke L, Clarke PA, Workman P. Drugging PI3K in cancer: refining targets and therapeutic strategies. Curr Opin Pharmacol. 2015;23:98–107.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Janku F. Phosphoinositide 3-kinase (PI3K) pathway inhibitors in solid tumors: from laboratory to patients. Cancer Treat Rev. 2017;59:93–101.

    Article  PubMed  CAS  Google Scholar 

  6. Stark AK, Sriskantharajah S, Hessel EM, Okkenhaug K. PI3K inhibitors in inflammation, autoimmunity and cancer. Curr Opin Pharmacol. 2015;23:82–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Krish P, Pagel JM. Exploring a future for PI3K inhibitors in chronic lymphocytic leukemia. Curr Hematol Malig Rep. 2019;14:292–301.

    Article  Google Scholar 

  8. Hashemzadeh K, Jokar MH, Sedighi S, Moradzadeh M. Therapeutic potency of PI3K pharmacological inhibitors of gastrointestinal cancer. Middle East J Dig Dis. 2018;11:5–16.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Elmenier FM, Lasheen DS, Abouzid KAM. Phosphatidylinositol 3 kinase (PI3K) inhibitors as new weapon to combat cancer. Eur J Med Chem. 2019;183:111718.

    Article  PubMed  CAS  Google Scholar 

  10. Wullenkord R, Friedrichs B, Erdmann T, Lenz G. Therapeutic potential of pi3k signaling in distinct entities of b-cell lymphoma. Expert Rev Hematol. 2019;12:1053–62.

    Article  PubMed  CAS  Google Scholar 

  11. Markhan A. Alpelisib: first global approval. Drugs. 2019;79:1249–53.

    Article  Google Scholar 

  12. Flinn IW, Kahl BS, Leonard JP, Furman RR, Brown JR, Byrd JC, et al. Idelalisib, an inhibitor of phosphatidylinositol3-kinase p110δ, for relapsed/refractory chronic lymphocytic leukemia. Blood. 2014;123:3406–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Fowler NH, Samaniego F, Jurczak W, Ghosh N, Derenzini E, Reeves JA, et al. Umbralisib, a dual PI3Kδ/CK1ε inhibitor in patients with relapsed or refractory indolent lymphoma. J Clin Oncol. 2021;39:1609–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Wee S, Wiederschain D, Maira S, Loo A, Miller C, deBeaumont, et al. PTEN-deficient cancers depend on PIK3CB. Proc Natl Acad Sci USA. 2008;105:13057–62.

  15. Lynch JT, Polanska UM, Delpuech O, Hancox U, Trinidad AG, Michopoulos F, et al. Inhibiting PI3Kβ with AZD8186 regulates key metabolic pathways in PTEN-null tumors. Clin Cancer Res. 2017;23:7584–95.

    Article  PubMed  CAS  Google Scholar 

  16. Wymann MP, Pirola L. Structure and function of phosphoinositide 3-kinases. Biochim Biophys Acta Mol Cell Biol Lipids. 1998;1436:127–50.

    Article  CAS  Google Scholar 

  17. Wymann MP, Björklöf K, Calvez R, Finan P, Thomast M, Trifilieff A, et al. Phosphoinositide 3‐kinase gamma: a key modulator in inflammation and allergy. Biochem Soc Trans. 2003;31:275–80.

    Article  PubMed  CAS  Google Scholar 

  18. Lanahan SM, Wymann MP, Lucas CL. The role of PI3Kγ in the immune system: new insights and translational implications. Nat Rev Immunol. 2022;22:687–700.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Takeda AJ, Maher TJ, Zhang Y, Lanahan SM, Bucklin ML, Compton SR, et al. Human PI3Kgamma deficiency and its microbiota-dependent mouse model reveal immunodeficiency and tissue immunopathology. Nat Commun. 2019;10:4364.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rommel C, Camps M, Ji H. PI3Kδ and PI3Kγ: partners in crime in inflammation in rheumatoid arthritis and beyond? Nat Rev Immunol. 2007;7:191–201.

    Article  PubMed  CAS  Google Scholar 

  21. Kaneda MM, Messer KS, Ralainirina N, Li HY, Leem CJ, Gorjestani S, et al. PI3Kγ is a molecular switch that controls immune suppression. Nature. 2016;539:437–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Li H, Park D, Abdul-Muneer PM, Xu B, Wang H, Xing B, et al. PI3Kγ inhibition alleviates symptoms and increases axon number in experimental autoimmune encephalomyelitis mice. Neuroscience. 2013;253:89–99.

    Article  PubMed  CAS  Google Scholar 

  23. Perino A, Ghigo A, Ferrero E, Morello F, Santulli G, Baille GS, et al. Integrating cardiac PIP(3) and cAMP signaling through a PKA anchoring function of p110gamma. Mol Cell. 2011;42:84–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Collier PN, Messersmith D, Le Tiran A, Bandarage UK, Boucher C. Come Jon, et al. Discovery of highly isoform selective thiazolopiperidine inhibitors of phosphoinositide 3-kinase γ. J Med Chem. 2015;58:5684–8.

    Article  PubMed  CAS  Google Scholar 

  25. Fruman DA, ChiuH, Hopkins BD, Bagrodia S, Cantley LC, Abraham RT. The PI3K pathway in human disease. Cell. 2017;170:605–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Rodon J, Dienstmann R, Serra V, Tabernero J. Development of PI3K inhibitors: lessons learned from early clinical trials. Nat Rev Clin Oncol. 2013;10:143–53.

    Article  PubMed  CAS  Google Scholar 

  27. Zhu J, Li K, Yu L, et al. Targeting phosphatidylinositol 3-kinase gamma (PI3Kγ): Discovery and development of its selective inhibitors. Med Res Rev. 2021;41:1599–621.

    Article  PubMed  CAS  Google Scholar 

  28. Knight ZA, Gonzalez B, Feldman ME, Zunder ER, Goldenberg DD, Williams O, et al. A pharmacological map of the PI3-K family defines a role for p110alpha in insulin signaling. Cell. 2006;125:733–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Rodrigues DA, Sagrillo FS, Fraga CAM. Duvelisib: a 2018 novel FDA-approved small molecule inhibiting phosphoinositide 3-kinases. Pharmaceuticals. 2019;12:69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Shin N, Li Y, Mei S, Wang KH, Hall L, Katiyar K, et al. INCB040093 is a novel PI3Kδ inhibitor for the treatment of B cell lymphoid malignancies. J Pharmacol Exp Ther. 2018;364:120–30.

    Article  PubMed  CAS  Google Scholar 

  31. Garces AE, Stocks MJ. Class 1 PI3K clinical candidates and recent inhibitor design strategies: a medicinal chemistry perspective. J Med Chem. 2019;62:4815–50.

    Article  PubMed  CAS  Google Scholar 

  32. Rhizen Pharmaceuticals SA. Receives FDA fast track designation for tenalisib (RP6530), a highly selective dual PI3K delta/gamma inhibitor for the treatment of patients with relapsed and/or refractory cutaneous T-cell lymphoma (CTCL). https://globenewswire.com/news-release/2018/04/13/1471290/0/en/Rhizen-Pharmaceuticals-S-A-receives-FDA-Fast-Track-Designationfor-Tenalisib-RP6530-a-highly-selective-dual-PI3K-delta-gammainhibitor-for-the-treatment-of-patients-with-relapsed-a.html.

  33. King-Unerwood J, Ito K, Murray PJ, Hardy G, Brookfiled FA, Brown CJ, et al. inventors. Respivert Limited, applicant. Quinazolin-4 (3h) -one derivatives used as pi3 kinase inhibitors. WO2012052753. 2011.

  34. Onions ST, Copmans AH, Broeckx RLM, Smith AJ, Taddei DMA, inventors. Respivert Limited, applicant. 2-((4-amino-3-(3-fluoro-5-hydroxyphenyl)-1h-pyrazolo[3,4-d]pyrimidin-1-yl)methyl)-3-(2-(trifluoromethyl)benzyl)quinazolin-4(3H)-one derivatives and their use as phosphoinositide 3-kinase inhibitors. WO2014140597. 2014.

  35. Evans CA, Liu T, Lescarbeau A, Nair SJ, Grenier L, Pradeilles JA, et al. Discovery of a selective phosphoinositide-3-kinase (PI3K)-γ inhibitor (IPI-549) as an immuno-oncology clinical candidate. ACS Med Chem Lett. 2016;7:862–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Drew SL, Thomas‐Tran R, Beatty JW, Fournier J, Lawson KV, Miles DH, et al. Discovery of potent and selective PI3Kγ inhibitors. J Med Chem. 2020;63:11235–57.

    Article  PubMed  CAS  Google Scholar 

  37. Tolcher A, Hong D, Sullivan R, Mier J, Shapiro G, Pearlberg J, et al. IPI-549-01: a phase I/Ib first in human study of IPI-549, a PI3K-gamma inhibitor, as monotherapy and in combination with an anti-PD-1 antibody in subjects with advanced solid tumors. Cancer Immunol Res. 2016;4:B070.

    Article  Google Scholar 

  38. Hong DS, Postow M, Chmielowski B, Sullivan R, Patnaik A, Cohen EEW. et al. Eganelisib, a first-in-class PI3Kγ inhibitor, in patients with advanced solid tumors: results of the phase 1/1b. MARIO-1 trial. Clin Cancer Res. 2023;29:2210–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Collier PN, Martinez-Botella G, Cornebise M, Cottrell KM, Doran JD, Griffith JP, et al. Structural basis for isoform selectivity in a class of benzothiazole inhibitors of phosphoinositide 3-kinase γ. J Med Chem. 2015;58:517–21.

    Article  PubMed  CAS  Google Scholar 

  40. Come JH, Collier PN, Henderson JA, Pierce AC, Davis RJ, Tiran AL, et al. Design and synthesis of a novel series of orally bioavailable, CNS-penetrant, isoform selective phosphoinositide 3-kinase γ (PI3Kγ) inhibitors with potential for the treatment of multiple sclerosis (MS). J Med Chem. 2018;61:5245–56.

    Article  PubMed  CAS  Google Scholar 

  41. Collier PN, Messersmith D, Tiran AL, Bandarage UK, Boucher C, Come J, et al. Discovery of highly isoform selective thiazolopiperidine inhibitors of phosphoinositide 3-kinase γ. J Med Chem. 2015;58:5684–8.

    Article  PubMed  CAS  Google Scholar 

  42. Bandarage UK, Aronov AM, Cao J, Come JH, Cottrell KM, Davis RJ, et al. Discovery of a novel series of potent and selective alkynylthiazole-derived PI3Kγ inhibitors. ACS Med Chem Lett. 2021;12:129–35.

    Article  PubMed  CAS  Google Scholar 

  43. Pemberton N, Mogemark M, Arlbrandt S, Bold P, Cox RJ, Gardelli C, et al. Discovery of highly isoform selective orally bioavailable phosphoinositide 3-kinase (PI3K)-γ inhibitors. J Med Chem. 2018;61:5435–41.

    Article  PubMed  CAS  Google Scholar 

  44. Gangadhara G, Dahl G, Bohnacker T, Rae R, Gunnarsson J, Blaho S, et al. A class of highly selective inhibitors bind to an active state of PI3Kγ. Nat Chem Biol. 2019;15:348–57.

    Article  PubMed  CAS  Google Scholar 

  45. Miles DH, Yan X, Thomas-Tran R, Fournier J, Sharif EU, Drew SL, et al. Discovery of potent and selective 7-azaindole isoindolinone-based PI3Kγ inhibitors. ACS Med Chem Lett. 2020;11:2244–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Mata G, Miles DH, Drew SL, Fournier J, Lawson KV, Mailyan AK, et al. Design, synthesis, and structure−activity relationship optimization of pyrazolopyrimidine amide inhibitors of phosphoinositide 3-kinase γ (PI3Kγ). J Med Chem. 2022;65:1418–44.

    Article  PubMed  CAS  Google Scholar 

  47. Hao X, inventor. Hangzhou Zhengxiang Pharmaceutical CO., LTD, applicant. Phosphatidylinositol 3-kinase inhibitors. WO2020210379A1. 2020.

  48. Chen ZH, Liu GB, Yan X, Chen SZ, Du PJ, Yin HJ, inventors. The National Institutes of Pharmaceutical R&D CO., LTD, applicant. WO2022017371A1. 2021.

  49. Esposito A, Viale G, Curigliano G. Safety, tolerability, and management of toxic effects of phosphatidylinositol 3-kinase inhibitor treatment in patients with cancer: a review. JAMA Oncol. 2019;5:1347–54.

    Article  PubMed  Google Scholar 

  50. Fruman DA, Rommel C. PI3K and cancer: lessons, challenges and opportunities. Nat Rev Drug Discov. 2014;13:140–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (82003780).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Sheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Dy., Zhang, Mm., Li, J. et al. Development of PI3Kγ selective inhibitors: the strategies and application. Acta Pharmacol Sin 45, 238–247 (2024). https://doi.org/10.1038/s41401-023-01166-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01166-8

Keywords

Search

Quick links