Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

tRF3-IleAAT reduced extracellular matrix synthesis in diabetic kidney disease mice by targeting ZNF281 and inhibiting ferroptosis

Abstract

It is well established that the synthesis of extracellular matrix (ECM) in mesangial cells is a major determinant of diabetic kidney disease (DKD). Elucidating the major players in ECM synthesis may be helpful to provide promising candidates for protecting against DKD progression. tRF3-IleAAT is a tRNA-derived fragment (tRF) produced by nucleases at tRNA-specific sites, which is differentially expressed in the sera of patients with diabetes mellitus and DKD. In this study we investigated the potential roles of tRFs in DKD. Db/db mice at 12 weeks were adapted as a DKD model. The mice displayed marked renal dysfunction accompanied by significantly reduced expression of tRF3-IleAAT and increased ferroptosis and ECM synthesis in the kidney tissues. The reduced expression of tRF3-IleAAT was also observed in high glucose-treated mouse glomerular mesangial cells. We administered ferrostatin-1 (1 mg/kg, once every two days, i.p.) to the mice from the age of 12 weeks for 8 weeks, and found that inhibition of the onset of ferroptosis significantly improved renal function, attenuated renal fibrosis and reduced collagen deposition. Overexpression of tRF3-IleAAT by a single injection of AAV carrying tRF3-IleAAT via caudal vein significantly inhibited ferroptosis and ECM synthesis in DKD model mice. Furthermore, we found that the expression of zinc finger protein 281 (ZNF281), a downstream target gene of tRF3-IleAAT, was significantly elevated in DKD models but negatively regulated by tRF3-IleAAT. In high glucose-treated mesangial cells, knockdown of ZNF281 exerted an inhibitory effect on ferroptosis and ECM synthesis. We demonstrated the targeted binding of tRF3-IleAAT to the 3’UTR of ZNF281. In conclusion, tRF3-IleAAT inhibits ferroptosis by targeting ZNF281, resulting in the mitigation of ECM synthesis in DKD models, suggesting that tRF3-IleAAT may be an attractive therapeutic target for DKD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: tRF3-IleAAT is downregulated in DKD models.
Fig. 2: tRF3-IleAAT overexpression alleviates ECM synthesis in DKD models.
Fig. 3: Inhibition of ferroptosis alleviates ECM synthesis in vivo and in vitro.
Fig. 4: tRF3-IleAAT overexpression alleviates ferroptosis in DKD models.
Fig. 5: Knockdown of the tRF3-IleAAT downstream target gene ZNF281 alleviates ferroptosis in HG-induced mesangial cells.
Fig. 6: tRF3-IleAAT directly targets ZNF281 and negatively regulates its expression.

Similar content being viewed by others

References

  1. Alicic RZ, Rooney MT, Tuttle KR. Diabetic kidney disease: challenges, progress, and possibilities. Clin J Am Soc Nephrol. 2017;12:2032–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Thurlow JS, Joshi M, Yan G, Norris KC, Agodoa LY, Yuan CM, et al. Global epidemiology of end-stage kidney disease and disparities in kidney replacement therapy. Am J Nephrol. 2021;52:98–107.

    Article  PubMed  Google Scholar 

  3. Calle P, Hotter G. Macrophage phenotype and fibrosis in diabetic nephropathy. Int J Mol Sci. 2020;21:2806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Humphreys BD. Mechanisms of renal fibrosis. Annu Rev Physiol. 2018;80:309–26.

    Article  CAS  PubMed  Google Scholar 

  5. Tonneijck L, Muskiet MH, Smits MM, van Bommel EJ, Heerspink HJ, van Raalte DH, et al. Glomerular hyperfiltration in diabetes: mechanisms, clinical significance, and treatment. J Am Soc Nephrol. 2017;28:1023–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhao JH. Mesangial cells and renal fibrosis. Adv Exp Med Biol. 2019;1165:165–94.

    Article  CAS  PubMed  Google Scholar 

  7. Jiang S, Su H. Cellular crosstalk of mesangial cells and tubular epithelial cells in diabetic kidney disease. Cell Commun Signal. 2023;21:288.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Thomas HY, Ford Versypt AN. Pathophysiology of mesangial expansion in diabetic nephropathy: mesangial structure, glomerular biomechanics, and biochemical signaling and regulation. J Biol Eng. 2022;16:19.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Thompson DM, Parker R. Stressing out over tRNA cleavage. Cell. 2009;138:215–9.

    Article  CAS  PubMed  Google Scholar 

  10. Li NS, Shan NY, Lu LG, Wang ZH. tRFtarget: a database for transfer RNA-derived fragment targets. Nucleic Acids Res. 2021;49:D254–D260.

    Article  CAS  PubMed  Google Scholar 

  11. Xie YY, Yao LP, Yu XC, Ruan Y, Li Z, Guo JM. Action mechanisms and research methods of tRNA-derived small RNAs. Signal Transduct Target Ther. 2020;5:109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yu XC, Xie YY, Zhang SS, Song XM, Xiao BX, Yan ZL. tRNA-derived fragments: mechanisms underlying their regulation of gene expression and potential applications as therapeutic targets in cancers and virus infections. Theranostics. 2021;11:461–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fagan SG, Helm M, Prehn JHM. tRNA-derived fragments: a new class of non-coding RNA with key roles in nervous system function and dysfunction. Prog Neurobiol. 2021;205:102118.

    Article  CAS  PubMed  Google Scholar 

  14. Zhou JH, Liu SX, Chen Y, Fu Y, Silver AJ, Hill MS, et al. Identification of two novel functional tRNA-derived fragments induced in response to respiratory syncytial virus infection. J Gen Virol. 2017;98:1600–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lu XY, Zhu XY, Yu MY, Na C, Gan WH, Zhang AQ. Profile analysis reveals transfer RNA fragments involved in mesangial cells proliferation. Biochem Biophys Res Commun. 2019;514:1101–7.

    Article  CAS  PubMed  Google Scholar 

  16. Shi HM, Yu MY, Wu Y, Cao YP, Li SW, Qu GT, et al. tRNA-derived fragments (tRFs) contribute to podocyte differentiation. Biochem Biophys Res Commun. 2020;521:1–8.

    Article  CAS  PubMed  Google Scholar 

  17. Huang C, Ding L, Ji JL, Qiao YY, Xia ZH, Shi HM, et al. Expression profiles and potential roles of serum tRNA-derived fragments in diabetic nephropathy. Exp Ther Med. 2023;26:311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, et al. Regulation of ferroptotic cancer cell death by GPX4. Cell. 2014;156:317–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang LY, Liu YC, Du TT, Yang H, Lei L, Guo MQ, et al. ATF3 promotes erastin-induced ferroptosis by suppressing system Xc. Cell Death Differ. 2020;27:662–75.

    Article  CAS  PubMed  Google Scholar 

  21. Chen X, Li JB, Kang R, Klionsky DJ, Tang DL. Ferroptosis: machinery and regulation. Autophagy. 2021;17:2054–81.

    Article  CAS  PubMed  Google Scholar 

  22. Martin-Sanchez D, Ruiz-Andres O, Poveda J, Carrasco S, Cannata-Ortiz P, Sanchez-Niño MD, et al. Ferroptosis, but not necroptosis, is important in nephrotoxic folic acid-induced AKI. J Am Soc Nephrol. 2017;28:218–29.

    Article  CAS  PubMed  Google Scholar 

  23. Li SW, Zheng LS, Zhang J, Liu XJ, Wu ZM. Inhibition of ferroptosis by up-regulating Nrf2 delayed the progression of diabetic nephropathy. Free Radic Biol Med. 2021;162:435–49.

    Article  CAS  PubMed  Google Scholar 

  24. Wang JY, Wang YQ, Liu Y, Cai XT, Huang X, Fu WJ, et al. Ferroptosis, a new target for treatment of renal injury and fibrosis in a 5/6 nephrectomy-induced CKD rat model. Cell Death Discov. 2022;8:127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sharma K, McCue P, Dunn SR. Diabetic kidney disease in the db/db mouse. Am J Physiol Ren Physiol. 2003;284:F1138–F1144.

    Article  CAS  Google Scholar 

  26. Miotto G, Rossetto M, Di Paolo ML, Orian L, Venerando R, Roveri A, et al. Insight into the mechanism of ferroptosis inhibition by ferrostatin-1. Redox Biol. 2020;28:101328.

    Article  CAS  PubMed  Google Scholar 

  27. Liu WJ, Wang XW. Prediction of functional microRNA targets by integrative modeling of microRNA binding and target expression data. Genome Biol. 2019;20:18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tuttle KR, Agarwal R, Alpers CE, Bakris GL, Brosius FC, Kolkhof P, et al. Molecular mechanisms and therapeutic targets for diabetic kidney disease. Kidney Int. 2022;102:248–60.

    Article  CAS  PubMed  Google Scholar 

  29. Li SW, Liu YW, He XW, Luo XG, Shi HM, Qu GT, et al. tRNA-derived fragments in podocytes with adriamycin-induced injury reveal the potential mechanism of idiopathic nephrotic syndrome. Biomed Res Int. 2020;2020:7826763.

    PubMed  PubMed Central  Google Scholar 

  30. Li D, Zhang H, Wu XQ, Dai Q, Tang SQ, Liu Y, et al. Role of tRNA derived fragments in renal ischemia-reperfusion injury. Ren Fail. 2022;44:815–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ho HJ, Shirakawa H. Oxidative stress and mitochondrial dysfunction in chronic kidney disease. Cells. 2022;12:88.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jha JC, Banal C, Chow BS, Cooper ME, Jandeleit-Dahm K. Diabetes and kidney disease: role of oxidative stress. Antioxid Redox Signal. 2016;25:657–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang JY, Liu Y, Wang YQ, Sun L. The cross-link between ferroptosis and kidney diseases. Oxid Med Cell Longev. 2021;2021:6654887.

    PubMed  PubMed Central  Google Scholar 

  34. Zhang XQ, Li XG. Abnormal iron and lipid metabolism mediated ferroptosis in kidney diseases and its therapeutic potential. Metabolites. 2022;12:58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wu Y, Zhao Y, Yang HZ, Wang YJ, Chen Y. HMGB1 regulates ferroptosis through Nrf2 pathway in mesangial cells in response to high glucose. Biosci Rep. 2021;41:BSR20202924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sheng XH, Shan C, Liu JB, Yang JT, Sun B, Chen DZ. Theoretical insights into the mechanism of ferroptosis suppression via inactivation of a lipid peroxide radical by liproxstatin-1. Phys Chem Chem Phys. 2017;19:13153–9.

    Article  CAS  PubMed  Google Scholar 

  37. Fang XX, Cai ZX, Wang H, Han D, Cheng Q, Zhang P, et al. Loss of cardiac ferritin h facilitates cardiomyopathy via slc7a11-mediated ferroptosis. Circ Res. 2020;127:486–501.

    Article  CAS  PubMed  Google Scholar 

  38. Ding CG, Ding XM, Zheng J, Wang B, Li Y, Xiang HL, et al. miR-182-5p and miR-378a-3p regulate ferroptosis in I/R-induced renal injury. Cell Death Dis. 2020;11:929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang WX, Zhu L, Li HT, Ren WY, Zhuo R, Feng CC, et al. Alveolar macrophage-derived exosomal tRF-22-8BWS7K092 activates Hippo signaling pathway to induce ferroptosis in acute lung injury. Int Immunopharmacol. 2022;107:108690.

    Article  CAS  PubMed  Google Scholar 

  40. Fidalgo M, Shekar PC, Ang YS, Fujiwara Y, Orkin SH, Wang J. Zfp281 functions as a transcriptional repressor for pluripotency of mouse embryonic stem cells. Stem Cells. 2011;29:1705–16.

    Article  CAS  PubMed  Google Scholar 

  41. Deng YR, Peng DZ, Xiao J, Zhao YH, Ding WH, Yuan ST, et al. Inhibition of the transcription factor ZNF281 by SUFU to suppress tumor cell migration. Cell Death Differ. 2023;30:702–15.

    Article  CAS  PubMed  Google Scholar 

  42. Hahn S, Hermeking H. ZNF281/ZBP-99: a new player in epithelial-mesenchymal transition, stemness, and cancer. J Mol Med. 2014;92:571–81.

    Article  CAS  PubMed  Google Scholar 

  43. Qin CJ, Bu PL, Zhang Q, Chen JT, Li QY, Liu JT, et al. ZNF281 regulates cell proliferation, migration and invasion in colorectal cancer through wnt/β-catenin signaling. Cell Physiol Biochem. 2019;52:1503–16.

    Article  CAS  PubMed  Google Scholar 

  44. Laudadio I, Bastianelli A, Fulci V, Carissimi C, Colantoni E, Palone F, et al. ZNF281 promotes colon fibroblast activation in TGFβ1-induced gut fibrosis. Int J Mol Sci. 2022;23:10261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pierdomenico M, Palone F, Cesi V, Vitali R, Mancuso AB, Cucchiara S, et al. Transcription factor ZNF281: a novel player in intestinal inflammation and fibrosis. Front Immunol. 2018;9:2907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 81970664), the Natural Science Foundation of Jiangsu Province (Nos. BK20211385 and BK20191082), the Dedicated Fund for Pediatric Medical Research of Jiangsu Province Medical Association (Nos. SYH-32034-0073 and SYH-32034-0085), and the 789 Outstanding Talent Program of SAHNMU (No. 789ZYRC202090251). We are grateful to the experimental center of the Second Affiliated Hospital of Nanjing Medical University for providing the platform.

Author information

Authors and Affiliations

Authors

Contributions

AQZ and HMS conceived and designed the experiments. YYQ, JLJ and WLH performed the experiments and analysed the data. YYQ wrote the manuscript. JLJ helped edit the manuscript, and WLH drew graphic materials. AQZ and HMS revised the manuscript and confirmed the authenticity of all the raw data. GTQ, SWL, XYL, RJ and YFL contributed to the data analysis and graphical abstract. All authors have read and endorsed the final manuscript.

Corresponding authors

Correspondence to Hui-min Shi or Ai-qing Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, Yy., Ji, Jl., Hou, Wl. et al. tRF3-IleAAT reduced extracellular matrix synthesis in diabetic kidney disease mice by targeting ZNF281 and inhibiting ferroptosis. Acta Pharmacol Sin 45, 1032–1043 (2024). https://doi.org/10.1038/s41401-024-01228-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-024-01228-5

Keywords

Search

Quick links