Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Protaetiibacter mangrovi sp. nov., isolated from mangrove soil

Abstract

A novel Gram-stain-positive, aerobic, non-flagellated and rod-shaped actinobacterium, designated 10F1B-8-1T, was isolated from mangrove soil sampled at Futian Mangrove Nature Reserve, China. The isolate was able to grow at 10–40 °C (optimum 30–32 °C), at pH 6–8 (optimum 7) and in the presence of 0–6% (w/v) NaCl (optimum 0%). Strain 10F1B-8-1T shared the highest 16S rRNA gene sequence similarity to Protaetiibacter larvae NBRC 113051T (98.3%), followed by Protaetiibacter intestinalis NBRC 113050T (98.2%). Phylogenetic trees based on 16S rRNA gene sequences and the core proteomes exhibited that strain 10F1B-8-1T formed a new phyletic line in the clade of genus Protaetiibacter, indicating that this strain belonged to the genus Protaetiibacter. Strain 10F1B-8-1T showed low average nucleotide identity (<84%) and digital DNA-DNA hybridization values (<27%) with closely related taxa, suggesting that strain 10F1B-8-1T was a hitherto undescribed species of the genus Protaetiibacter. Strain 10F1B-8-1T contained D-2,4-diaminobutyric acid as the diagnostic diamino acid, and the peptidoglycan type was characterized as type B2β. The major fatty acids were iso-C16:0, anteiso-C15:0 and anteiso-C17:0. The major menaquinones were MK-13 and MK-14. The polar lipid profile included diphosphatidylglycerol, phosphatidylglycerol, an unidentified glycolipid and five unidentified lipids. Notably, the ethyl acetate extracts of strain 10F1B-8-1T showed effective antibacterial activity against Bacillus subtilis CPCC 100029 and Escherichia coli tolC. According to the polyphasic data, strain 10F1B-8-1T should be classified as a novel species of the genus Protaetiibacter, for which the name Protaetiibacter mangrovi sp. nov. is proposed, with the type strain 10F1B-8-1T (=JCM 33142T = CPCC 205428T).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Heo J, Cho H, Kim MA, Hamada M, Tamura T, Saitou S, Kim SJ, Kwon SW. Protaetiibacter intestinalis gen. nov., of the family Microbacteriaceae, isolated from gut of Protaetia brevitarsis seulensis, reclassification of Lysinimonas kribbensis Jang et al. 2013 as Pseudolysinimonas kribbensis gen. nov., comb. nov. and emended description of the genus Lysinimonas Jang et al. 2013. Int J Syst Evol Microbiol. 2019;69:2101–7.

    Article  PubMed  Google Scholar 

  2. Lee SA, Heo J, Kim MA, Tamura T, Saitou S, Kwon SW, Weon HY. Protaetiibacter larvae sp. nov. and Agromyces intestinalis sp. nov., isolated from the gut of larvae of Protaetia brevitarsis seulensis, reclassification of Lysinimonas yzui as Pseudolysinimonas yzui comb. nov. and emended description of the genus Pseudolysinimonas. Int J Syst Evol Microbiol. 2021;71. https://doi.org/10.1099/ijsem.0.004669.

  3. Li F, Lu Q, Liao S, Tuo L, Liu S, Yang Q, Shen A, Sun C. Schumannella soli sp. nov., a novel actinomycete isolated from mangrove soil by in situ cultivation. Antonie Van Leeuwenhoek. 2021;114:1657–67.

    Article  CAS  PubMed  Google Scholar 

  4. Walsh PS, Metzger DA, Higuchi R. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques. 1991;10:506–13.

    CAS  PubMed  Google Scholar 

  5. Li FN, Tuo L, Pan Z, Guo M, Lee SM, Chen L, Hu L, Sun CH. Aureimonas endophytica sp. nov., a novel endophytic bacterium isolated from Kandelia candel. Int J Syst Evol Microbiol. 2017;67:2934–20.

    Article  CAS  PubMed  Google Scholar 

  6. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionar Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–25.

    CAS  PubMed  Google Scholar 

  9. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981;17:368–76.

    Article  CAS  PubMed  Google Scholar 

  10. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol. 1971;20:406–16.

    Article  Google Scholar 

  11. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39:783–91.

    Article  PubMed  Google Scholar 

  12. Del Sal G, Manfioletti G, Schneider C. The CTAB-DNA precipitation method: a common mini-scale preparation of template DNA from phagemids, phages or plasmids suitable for sequencing. Biotechniques. 1989;7:514–20.

    PubMed  Google Scholar 

  13. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016;44:6614–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T, Bun C, Conrad N, Dietrich EM, Disz T, Gabbard JL, Gerdes S, Henry CS, Kenyon RW, Machi D, Mao C, Nordberg EK, Olsen GJ, Murphy-Olson DE, Olson R, Overbeek R, Parrello B, Pusch GD, Shukla M, Vonstein V, Warren A, Xia F, Yoo H, Stevens RL. Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. Nucleic Acids Res. 2017;45:D535–42.

    Article  CAS  PubMed  Google Scholar 

  15. Galperin MY, Makarova KS, Wolf YI, Koonin EV. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res. 2015;43:D261–9.

    Article  CAS  PubMed  Google Scholar 

  16. Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42:D490–5.

    Article  CAS  PubMed  Google Scholar 

  18. Xu L, Dong Z, Fang L, Luo Y, Wei Z, Guo H, Zhang G, Gu YQ, Coleman-Derr D, Xia Q, Wang Y. OrthoVenn2: a web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res. 2019;47:W52–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP, Medema MH, Weber T. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res. 2021;49:W29–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 2013;14:60.

    Article  Google Scholar 

  21. Avram O, Rapoport D, Portugez S, Pupko T. M1CR0B1AL1Z3R-a user-friendly web server for the analysis of large-scale microbial genomics data. Nucleic Acids Res. 2019;47:W88–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Magee CM, Rodeheaver G, Edgerton MT, Edlich RF. A more reliable gram staining technic for diagnosis of surgical infections. Am J Surg. 1975;130:341–6.

    Article  CAS  PubMed  Google Scholar 

  23. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ, Chen HH, Xu LH, Jiang CL. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. Int J Syst Evol Microbiol. 2005;55:1149–53.

    Article  CAS  PubMed  Google Scholar 

  24. Li FN, Lu Q, Liao SL, Jin T, Li W, Sun CH. Labedella phragmitis sp. nov. and Labedella populi sp. nov., two endophytic actinobacteria isolated from plants in the Taklamakan Desert and emended description of the genus Labedella. Syst Appl Microbiol. 2019;42:126004.

    Article  CAS  PubMed  Google Scholar 

  25. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. Newark, DE: MIDI Inc;1990.

  26. Tuo L, Yan XR, Li FN, Bao YX, Shi HC, Li HY, Sun CH. Brachybacterium endophyticum sp. nov., a novel endophytic actinobacterium isolated from bark of Scutellaria baicalensis Georgi. Int J Syst Evol Microbiol. 2018;68:3563–8.

    Article  CAS  PubMed  Google Scholar 

  27. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol. 1977;100:221–30.

    Article  CAS  PubMed  Google Scholar 

  28. Guo L, Tuo L, Habden X, Zhang Y, Liu J, Jiang Z, Liu S, Dilbar T, Sun C. Allosalinactinospora lopnorensis gen. nov., sp. nov., a new member of the family Nocardiopsaceae isolated from soil. Int J Syst Evol Microbiol. 2015;65:206–13.

    Article  CAS  PubMed  Google Scholar 

  29. Paderog MJV, Suarez AFL, Sabido EM, Low ZJ, Saludes JP, Dalisay DS. Anthracycline shunt metabolites from philippine marine sediment-derived Streptomyces destroy cell membrane integrity of multidrug-resistant Staphylococcus aureus. Front Microbiol. 2020;11:743.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA. 2009;106:19126–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ciufo S, Kannan S, Sharma S, Badretdin A, Clark K, Turner S, Brover S, Schoch CL, Kimchi A, DiCuccio M. Using average nucleotide identity to improve taxonomic assignments in prokaryotic genomes at the NCBI. Int J Syst Evol Microbiol. 2018;68:2386–92.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the Beijing Natural Science Foundation (BJNSF, Grant number 5224038 and 7222256), the National Natural Science Foundation of China (NSFC, Grant number 32200001), and Foreign Youth Talent Program QN2022194001L funded by Ministry of Science and Technology of the People’s Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chen Shen or Chenghang Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Hao, X., Lu, Q. et al. Protaetiibacter mangrovi sp. nov., isolated from mangrove soil. J Antibiot 76, 532–539 (2023). https://doi.org/10.1038/s41429-023-00627-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-023-00627-w

Search

Quick links