Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rate and associations of inner retinal thinning in eyes with retinal vein occlusion and regressed macular oedema

Abstract

Purpose

To investigate the associations between visual acuity (VA) and structural optical coherence tomography (OCT) features in retinal vein occlusion (RVO) eyes after cystoid macular oedema (CMO) regression and to assess whether inner retinal thinning is progressive.

Methods

Retrospective observational study of RVO eyes with regressed CMO for at least 6 months. OCT scans at CMO regression were analysed, and features were correlated with VA at that visit. The inner retinal thickness was longitudinally compared between RVO and unaffected fellow eyes (controls) with linear mixed models. The rate of inner retinal thinning was obtained as the interaction term between disease status and time. Associations between inner retinal thinning and clinical characteristics were explored.

Results

Thirty-six RVO eyes were followed for 34.2 ± 21.1 months after CMO regression. The presence of ellipsoid zone disruption (regression estimate[standard error(SE)] = 0.16[0.04] LogMAR vs. intact, p < 0.001) and lower inner retinal thickness (regression estimate[SE] = −0.25[0.12] LogMAR for 100-μm increase, p = 0.01) were associated with worse VA. The inner retinal thickness decreased faster in RVO than controls (rate of retinal thinning −0.27 ± 0.09 μm/month vs. −0.08 ± 0.11 μm/month, p = 0.01). Macular ischaemia was associated with a faster rate of retinal thinning (interaction term macular ischaemia*follow-up time, p = 0.04).

Conclusion

Inner retinal and photoreceptors’ layers integrity are associated with better visual acuity once CMO resolves. RVO eyes undergo progressive inner retinal thinning after CMO regression, faster in eyes with macular ischaemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Clinical associations between optical coherence tomography features and visual acuity (VA) after cystoid macular oedema (CMO) regression.
Fig. 2: Clinical example of inner retinal thinning at cystoid macular oedema (CMO) regression in an eye with branch retinal vein occlusion (BRVO).
Fig. 3: Clinical example of progressive inner retinal thinning after cystoid macular oedema (CMO) regression in an eye with hemicentral inferior retinal vein occlusion (HRVO).
Fig. 4: Rate of inner retinal thinning in retinal vein occlusion (RVO) and fellow healthy eyes.

Similar content being viewed by others

Data availability

The datasets generated and/or analysed during the current study, which were used for all statistical analyses and for the creation of graphs presented in Figs. 1 and 4, as well as the original images depicted in Figs. 2 and 3, and all supplementary materials, are available from the corresponding author upon reasonable request.

References

  1. Rogers S, McIntosh RL, Cheung N, Lim L, Wang JJ, Mitchell P, et al. The prevalence of retinal vein occlusion: pooled data from population studies from the United States, Europe, Asia, and Australia. Ophthalmology. 2010;117:313–9.e1.

    Article  PubMed  Google Scholar 

  2. van Heuven WA, Hayreh MS, Hayreh SS. Experimental central retinal vascular occlusion. Blood-retinal barrier alterations and retinal lesions. Trans Ophthalmol Soc U K (1962). 1977;97:588–618.

    PubMed  Google Scholar 

  3. Hayreh SS. Ocular vascular occlusive disorders: natural history of visual outcome. Prog Retin Eye Res. 2014;41:1–25.

    Article  PubMed  Google Scholar 

  4. Scott IU, VanVeldhuisen PC, Oden NL, Ip MS, Blodi BA, Group SI. Month 60 outcomes after treatment initiation with anti-vascular endothelial growth factor therapy for macular edema due to central retinal or hemiretinal vein occlusion. Am J Ophthalmol. 2022;240:330–41.

    Article  PubMed  CAS  Google Scholar 

  5. Iftikhar M, Mir TA, Hafiz G, Zimmer-Galler I, Scott AW, Solomon SD, et al. Loss of peak vision in retinal vein occlusion patients treated for macular edema. Am J Ophthalmol. 2019;205:17–26.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Michl M, Liu X, Kaider A, Sadeghipour A, Gerendas BS, Schmidt-Erfurth U. The impact of structural optical coherence tomography changes on visual function in retinal vein occlusion. Acta Ophthalmol. 2021;99:418–26.

    Article  PubMed  Google Scholar 

  7. Chan EW, Eldeeb M, Sun V, Thomas D, Omar A, Kapusta MA, et al. Disorganization of retinal inner layers and ellipsoid zone disruption predict visual outcomes in central retinal vein occlusion. Ophthalmol Retina. 2019;3:83–92.

    Article  PubMed  Google Scholar 

  8. Sen P, Gurudas S, Ramu J, Patrao N, Chandra S, Rasheed R, et al. Predictors of visual acuity outcomes after anti-vascular endothelial growth factor treatment for macular edema secondary to central retinal vein occlusion. Ophthalmol Retina. 2021;5:1115–24.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Etheridge T, Blodi B, Oden N, Van Veldhuisen P, Scott IU, Ip MS, et al. Spectral domain OCT predictors of visual acuity in the study of COmparative Treatments for REtinal Vein Occlusion 2: SCORE 2 Report 15. Ophthalmol Retina. 2021;5:991–8.

    Article  PubMed  Google Scholar 

  10. Alshareef RA, Barteselli G, You Q, Goud A, Jabeen A, Rao HL, et al. In vivo evaluation of retinal ganglion cells degeneration in eyes with branch retinal vein occlusion. Br J Ophthalmol. 2016;100:1506–10.

    Article  PubMed  Google Scholar 

  11. Lim HB, Kim MS, Jo YJ, Kim JY. Prediction of retinal ischemia in branch retinal vein occlusion: spectral-domain optical coherence tomography study. Investig Ophthalmol Vis Sci. 2015;56:6622–9.

    Article  Google Scholar 

  12. Kim CS, Shin KS, Lee HJ, Jo YJ, Kim JY. Sectoral retinal nerve fiber layer thinning in branch retinal vein occlusion. Retina. 2014;34:525–30.

    Article  PubMed  Google Scholar 

  13. Martinet V, Guigui B, Glacet-Bernard A, Zourdani A, Coscas G, Soubrane G, et al. Macular edema in central retinal vein occlusion: correlation between optical coherence tomography, angiography and visual acuity. Int Ophthalmol. 2012;32:369–77.

    Article  PubMed  Google Scholar 

  14. Ko J, Kwon OW, Byeon SH. Optical coherence tomography predicts visual outcome in acute central retinal vein occlusion. Retina. 2014;34:1132–41.

    Article  PubMed  Google Scholar 

  15. Rahimy E, Sarraf D, Dollin ML, Pitcher JD, Ho AC. Paracentral acute middle maculopathy in nonischemic central retinal vein occlusion. Am J Ophthalmol. 2014;158:372–80.e1.

    Article  PubMed  Google Scholar 

  16. Zhang X, Iverson SM, Tan O, Huang D. Effect of signal intensity on measurement of ganglion cell complex and retinal nerve fiber layer scans in fourier-domain optical coherence tomography. Transl Vis Sci Technol. 2015;4:7.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Nagasato D, Muraoka Y, Tanabe M, Nishigori N, Osaka R, Mitamura Y, et al. Foveal thickness fluctuation in anti-VEGF treatment for branch retinal vein occlusion: a long-term study. Ophthalmol Retina. 2022;6:567–74.

    Article  PubMed  Google Scholar 

  18. Leung CK, Yu M, Weinreb RN, Ye C, Liu S, Lai G, et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a prospective analysis of age-related loss. Ophthalmology. 2012;119:731–7.

    Article  PubMed  Google Scholar 

  19. Mandrekar JN. Receiver operating characteristic curve in diagnostic test assessment. J Thorac Oncol. 2010;5:1315–6.

    Article  PubMed  Google Scholar 

  20. Niedzwiecki M, Hunt A, Nguyen V, Mehta H, Creuzot-Garcher C, Gabrielle PH, et al. 12-month outcomes of ranibizumab versus aflibercept for macular oedema in central retinal vein occlusion: data from the FRB! registry. Acta Ophthalmol. 2022;100:e920–e7.

    Article  PubMed  CAS  Google Scholar 

  21. Scott IU, VanVeldhuisen PC, Ip MS, Blodi BA, Oden NL, King J, et al. Baseline factors associated with 6-month visual acuity and retinal thickness outcomes in patients with macular edema secondary to central retinal vein occlusion or hemiretinal vein occlusion: SCORE2 Study Report 4. JAMA Ophthalmol. 2017;135:639–49.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yiu G, Welch RJ, Wang Y, Wang Z, Wang PW, Haskova Z. Spectral-domain OCT predictors of visual outcomes after ranibizumab treatment for macular edema resulting from retinal vein occlusion. Ophthalmol Retina. 2020;4:67–76.

    Article  PubMed  Google Scholar 

  23. Gurudas S, Patrao N, Nicholson L, Sen P, Ramu J, Sivaprasad S, et al. Visual outcomes associated with patterns of macular edema resolution in central retinal vein occlusion treated with anti-vascular endothelial growth factor therapy: a post hoc analysis of the Lucentis, Eylea, Avastin in Vein Occlusion (LEAVO) Trial. JAMA Ophthalmol. 2022;140:143–50.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Podkowinski D, Philip AM, Vogl WD, Gamper J, Bogunovic H, Gerendas BS, et al. Neuroretinal atrophy following resolution of macular oedema in retinal vein occlusion. Br J Ophthalmol. 2019;103:36–42.

    Article  PubMed  Google Scholar 

  25. Bentley TG, Weinstein MC, Kuntz KM. Effects of categorizing continuous variables in decision-analytic models. Med Decis Mak. 2009;29:549–56.

    Article  Google Scholar 

  26. Von Hanno T, Lade AC, Mathiesen EB, Peto T, Njolstad I, Bertelsen G. Macular thickness in healthy eyes of adults (N = 4508) and relation to sex, age and refraction: the Tromso Eye Study (2007-2008). Acta Ophthalmol. 2017;95:262–9.

    Article  Google Scholar 

  27. Yanoff M, Fine BS, Brucker AJ, Eagle RC Jr. Pathology of human cystoid macular edema. Surv Ophthalmol. 1984;28:505–11.

    Article  PubMed  Google Scholar 

  28. Santos AR, Santos T, Alves D, Marques IP, Lobo C, Cunha-Vaz J. Characterization of initial stages of diabetic macular edema. Ophthalmic Res. 2019;62:203–10.

    Article  PubMed  Google Scholar 

  29. Ebrahimiadib N, Kianzad Z, Zarei M, Davoudi S, Riazi-Esfahani H, Bazvand F, et al. Non-cystic macular thickening on optical coherence tomography as an alternative to fluorescein angiography for predicting retinal vascular leakage in early stages of uveitis. Sci Rep. 2022;12:13473.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Hirano Y, Suzuki N, Tomiyasu T, Kurobe R, Yasuda Y, Esaki Y, et al. Multimodal imaging of microvascular abnormalities in retinal vein occlusion. J Clin Med. 2021;10:405.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Jovanovic J, Liu X, Kokona D, Zinkernagel MS, Ebneter A. Inhibition of inflammatory cells delays retinal degeneration in experimental retinal vein occlusion in mice. Glia. 2020;68:574–88.

    Article  PubMed  Google Scholar 

  32. Ogino K, Tsujikawa A, Murakami T, Muraoka Y, Akagi-Kurashige Y, Ishihara K, et al. Evaluation of macular function using focal macular electroretinography in eyes with macular edema associated with branch retinal vein occlusion. Invest Ophthalmol Vis Sci. 2011;52:8047–55.

    Article  PubMed  Google Scholar 

  33. Ogino K, Tsujikawa A, Nakamura H, Miyamoto K, Murakami T, Muraoka Y, et al. Focal macular electroretinogram in macular edema secondary to central retinal vein occlusion. Investig Ophthalmol Vis Sci. 2011;52:3514–20.

    Article  Google Scholar 

  34. Chan A, Duker JS, Ko TH, Fujimoto JG, Schuman JS. Normal macular thickness measurements in healthy eyes using Stratus optical coherence tomography. Arch Ophthalmol. 2006;124:193–8.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Babiuch AS, Han M, Conti FF, Wai K, Silva FQ, Singh RP. Association of disorganization of retinal inner layers with visual acuity response to anti-vascular endothelial growth factor therapy for macular edema secondary to retinal vein occlusion. JAMA Ophthalmol. 2019;137:38–46.

    Article  PubMed  Google Scholar 

  36. Ahn J, Jang K, Sohn J, Park JI, Hwang DD. Effect of intravitreal ranibizumab and aflibercept injections on retinal nerve fiber layer thickness. Sci Rep. 2021;11:5010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Coscas F, Glacet-Bernard A, Miere A, Caillaux V, Uzzan J, Lupidi M, et al. Optical coherence tomography angiography in retinal vein occlusion: evaluation of superficial and deep capillary plexa. Am J Ophthalmol. 2016;161:160–71.e1-2.

    Article  PubMed  Google Scholar 

  38. Zhang Y, Fortune B, Atchaneeyasakul LO, McFarland T, Mose K, Wallace P, et al. Natural history and histology in a rat model of laser-induced photothrombotic retinal vein occlusion. Curr Eye Res. 2008;33:365–76.

    Article  PubMed  CAS  Google Scholar 

  39. Hayreh SS, Zimmerman MB. Fundus changes in central retinal vein occlusion. Retina. 2015;35:29–42.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the conception or design of the work, the acquisition, analysis, and interpretation of data, drafting the work, and revising it critically for intellectual content. Each coauthor has seen and agrees with how their name is listed.

Corresponding author

Correspondence to Maria Vittoria Cicinelli.

Ethics declarations

Competing interests

MVC, LLF, AB, LB, AR, RL, PU: No financial disclosures. FB consultant for: Allergan Inc (Irvine, California, USA), Bayer Shering-Pharma (Berlin, Germany), Hoffmann-La-Roche (Basel, Switzerland), Novartis (Basel, Switzerland), Sanofi-Aventis (Paris, France), Thrombogenics (Heverlee, Belgium), Zeiss (Dublin, USA), Boehringer-Ingelheim, Fidia Sooft, Ntc Pharma, Sifi.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cicinelli, M.V., La Franca, L., Berni, A. et al. Rate and associations of inner retinal thinning in eyes with retinal vein occlusion and regressed macular oedema. Eye 38, 138–144 (2024). https://doi.org/10.1038/s41433-023-02647-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41433-023-02647-0

Search

Quick links