Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Uncovering the transcriptional regulatory network involved in boosting wheat regeneration and transformation

An Author Correction to this article was published on 05 January 2024

This article has been updated

Abstract

Genetic transformation is important for gene functional study and crop improvement. However, it is less effective in wheat. Here we employed a multi-omic analysis strategy to uncover the transcriptional regulatory network (TRN) responsible for wheat regeneration. RNA-seq, ATAC-seq and CUT&Tag techniques were utilized to profile the transcriptional and chromatin dynamics during early regeneration from the scutellum of immature embryos in the wheat variety Fielder. Our results demonstrate that the sequential expression of genes mediating cell fate transition during regeneration is induced by auxin, in coordination with changes in chromatin accessibility, H3K27me3 and H3K4me3 status. The built-up TRN driving wheat regeneration was found to be dominated by 446 key transcription factors (TFs). Further comparisons between wheat and Arabidopsis revealed distinct patterns of DNA binding with one finger (DOF) TFs in the two species. Experimental validations highlighted TaDOF5.6 (TraesCS6A02G274000) and TaDOF3.4 (TraesCS2B02G592600) as potential enhancers of transformation efficiency in different wheat varieties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A transcriptional and epigenomic atlas of wheat regeneration.
Fig. 2: Chromatin dynamics coordinate transcription profile during wheat regeneration.
Fig. 3: Auxin signalling promotes wheat regeneration.
Fig. 4: TRN governing wheat regeneration.
Fig. 5: Comparative analysis between wheat and Arabidopsis.
Fig. 6: DOFs promote wheat regeneration.
Fig. 7: Working model for epigenetic-associated transcriptional regulation of wheat regeneration.

Similar content being viewed by others

Data availability

The raw sequence data reported in this paper have been deposited in the Genome Sequence Archive80 of the National Genomics Data Center81, China National Center for Bioinformation/Beijing Institute of Genomics, Chinese Academy of Sciences (GSA: CRA008502 and CRA010204) and are publicly accessible at https://ngdc.cncb.ac.cn/gsa. Quantitative results of RNA-seq, ATAC-seq and CUT&Tag data have been uploaded to the Figshare database (https://doi.org/10.6084/m9.figshare.21378990).

Code availability

Code used for all processing and analysis is available in GitHub (https://github.com/xmliu01/Uncovering-the-TRN-involved-in-boosting-wheat-regeneration-and-transformation).

Change history

References

  1. Haberlandt, G. in Plant Tissue Culture: 100 Years Since Gottlieb Haberlandt (eds Laimer, M. & Rücker, W.) 1–24 (Springer, 2003); https://doi.org/10.1007/978-3-7091-6040-4_1

  2. Bidabadi, S. S. & Jain, S. M. Cellular, molecular, and physiological aspects of in vitro plant regeneration. Plants 9, 702 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Thorpe, T. A. History of plant tissue culture. Mol. Biotechnol. 37, 169–180 (2007).

    Article  PubMed  CAS  Google Scholar 

  4. Radhakrishnan, D. et al. Shoot regeneration: a journey from acquisition of competence to completion. Curr. Opin. Plant Biol. 41, 23–31 (2018).

    Article  PubMed  CAS  Google Scholar 

  5. Shin, J., Bae, S. & Seo, P. J. De novo shoot organogenesis during plant regeneration. J. Exp. Bot. 71, 63–72 (2019).

    Article  Google Scholar 

  6. Hayta, S. et al. An efficient and reproducible Agrobacterium-mediated transformation method for hexaploid wheat (Triticum aestivum L.). Plant Methods 15, 121 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Ikeuchi, M. et al. Molecular mechanisms of plant regeneration. Annu. Rev. Plant Biol. 70, 377–406 (2019).

    Article  PubMed  CAS  Google Scholar 

  8. Hu, B. et al. Divergent regeneration-competent cells adopt a common mechanism for callus initiation in angiosperms. Regeneration 4, 132–139 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Atta, R. et al. Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro. Plant J. 57, 626–644 (2009).

    Article  PubMed  CAS  Google Scholar 

  10. Sugimoto, K., Jiao, Y. & Meyerowitz, E. M. Arabidopsis regeneration from multiple tissues occurs via a root development pathway. Dev. Cell 18, 463–471 (2010).

    Article  PubMed  CAS  Google Scholar 

  11. Hu, X. & Xu, L. Transcription factors WOX11/12 directly activate WOX5/7 to promote root primordia initiation and organogenesis. Plant Physiol. 172, 2363–2373 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Liu, J. et al. The WOX11-LBD16 pathway promotes pluripotency acquisition in callus cells during de novo shoot regeneration in tissue culture. Plant Cell Physiol. 59, 734–743 (2018).

    Article  PubMed  Google Scholar 

  13. Liu, J. et al. WOX11 and 12 are involved in the first-step cell fate transition during de novo root organogenesis in Arabidopsis. Plant Cell 26, 1081–1093 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Gordon, S. P. et al. Pattern formation during de novo assembly of the Arabidopsis shoot meristem. Development 134, 3539–3548 (2007).

    Article  PubMed  CAS  Google Scholar 

  15. Meng, W. J. et al. Type-B ARABIDOPSIS RESPONSE REGULATORs specify the shoot stem cell niche by dual regulation of WUSCHEL. Plant Cell 29, 1357–1372 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Kareem, A. et al. PLETHORA genes control regeneration by a two-step mechanism. Curr. Biol. 25, 1017–1030 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Liu, X., Zhu, K. & Xiao, J. Recent advances in understanding of the epigenetic regulation of plant regeneration. aBIOTECH https://doi.org/10.1007/s42994-022-00093-2 (2023).

  18. He, C., Chen, X., Huang, H. & Xu, L. Reprogramming of H3K27me3 is critical for acquisition of pluripotency from cultured Arabidopsis tissues. PLoS Genet. 8, e1002911 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Lee, K., Park, O.-S. & Seo, P. J. Arabidopsis ATXR2 deposits H3K36me3 at the promoters of LBD genes to facilitate cellular dedifferentiation. Sci. Signal. 10, eaan0316 (2017).

    Article  PubMed  Google Scholar 

  20. Lee, K. et al. Arabidopsis ATXR2 represses de novo shoot organogenesis in the transition from callus to shoot formation. Cell Rep. 37, 109980 (2021).

    Article  PubMed  CAS  Google Scholar 

  21. Lee, K., Park, O.-S., Choi, C. Y. & Seo, P. J. ARABIDOPSIS TRITHORAX 4 facilitates shoot identity establishment during the plant regeneration process. Plant Cell Physiol. 60, 826–834 (2019).

    Article  PubMed  CAS  Google Scholar 

  22. Liu, H., Zhang, H., Dong, Y. X., Hao, Y. J. & Zhang, X. S. DNA METHYLTRANSFERASE1-mediated shoot regeneration is regulated by cytokinin-induced cell cycle in Arabidopsis. New Phytol. 217, 219–232 (2018).

    Article  PubMed  CAS  Google Scholar 

  23. Hiei, Y., Ishida, Y. & Komari, T. Progress of cereal transformation technology mediated by Agrobacterium tumefaciens. Front. Plant Sci. 5, 628 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ishida, Y., Tsunashima, M., Hiei, Y. & Komari, T. Wheat (Triticum aestivum L.) transformation using immature embryos. Methods Mol. Biol. 1223, 189–198 (2015).

    Article  PubMed  CAS  Google Scholar 

  25. Zhang, W. et al. Regeneration capacity evaluation of some largely popularized wheat varieties in China. Acta Agron. Sin. 44, 208–217 (2018).

    Article  Google Scholar 

  26. Wang, K., Liu, H., Du, L. & Ye, X. Generation of marker-free transgenic hexaploid wheat via an Agrobacterium-mediated co-transformation strategy in commercial Chinese wheat varieties. Plant Biotechnol. J. 15, 614–623 (2017).

    Article  PubMed  CAS  Google Scholar 

  27. Lowe, K. et al. Morphogenic regulators Baby boom and Wuschel improve monocot transformation. Plant Cell 28, 1998–2015 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Suo, J. et al. Identification of regulatory factors promoting embryogenic callus formation in barley through transcriptome analysis. BMC Plant Biol. 21, 145 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Wang, K. et al. The gene TaWOX5 overcomes genotype dependency in wheat genetic transformation. Nat. Plants 8, 110–117 (2022).

    Article  PubMed  Google Scholar 

  30. Debernardi, J. M. et al. A GRF-GIF chimeric protein improves the regeneration efficiency of transgenic plants. Nat. Biotechnol. 38, 1274–1279 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Qiu, F. et al. Transient expression of a TaGRF4-TaGIF1 complex stimulates wheat regeneration and improves genome editing. Sci. China Life Sci. 65, 731–738 (2022).

    Article  PubMed  CAS  Google Scholar 

  32. Zhao, L. et al. Dynamic chromatin regulatory programs during embryogenesis of hexaploid wheat. Genome Biol. 24, 7 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Klemm, S. L., Shipony, Z. & Greenleaf, W. J. Chromatin accessibility and the regulatory epigenome. Nat. Rev. Genet. 20, 207–220 (2019).

    Article  PubMed  CAS  Google Scholar 

  34. Wang, M. et al. An atlas of wheat epigenetic regulatory elements reveals subgenome divergence in the regulation of development and stress responses. Plant Cell 33, 865–881 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sarkar, A. K. et al. Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446, 811–814 (2007).

    Article  PubMed  CAS  Google Scholar 

  36. Yu, J., Liu, W., Liu, J., Qin, P. & Xu, L. Auxin control of root organogenesis from callus in tissue culture. Front. Plant Sci. 8, 1385 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Della Rovere, F. et al. Auxin and cytokinin control formation of the quiescent centre in the adventitious root apex of Arabidopsis. Ann. Bot. 112, 1395–1407 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wu, L. Y. et al. Dynamic chromatin state profiling reveals regulatory roles of auxin and cytokinin in shoot regeneration. Dev. Cell 57, 526–542 (2022).

    Article  PubMed  CAS  Google Scholar 

  39. Ikeuchi, M. et al. A gene regulatory network for cellular reprogramming in plant regeneration. Plant Cell Physiol. 59, 770–782 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  40. Shi, B. et al. Two-step regulation of a meristematic cell population acting in shoot branching in Arabidopsis. PLoS Genet. 12, e1006168 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hao, C. et al. Resequencing of 145 landmark cultivars reveals asymmetric sub-genome selection and strong founder genotype effects on wheat breeding in China. Mol. Plant 13, 1733–1751 (2020).

    Article  PubMed  CAS  Google Scholar 

  42. Bisht, A. et al. PAT1-type GRAS-domain proteins control regeneration by activating DOF3.4 to drive cell proliferation in Arabidopsis roots. Plant Cell https://doi.org/10.1093/plcell/koad028 (2023).

  43. Fan, M., Xu, C., Xu, K. & Hu, Y. LATERAL ORGAN BOUNDARIES DOMAIN transcription factors direct callus formation in Arabidopsis regeneration. Cell Res. 22, 1169–1180 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Schulze, S., Schäfer, B. N., Parizotto, E. A., Voinnet, O. & Theres, K. LOST MERISTEMS genes regulate cell differentiation of central zone descendants in Arabidopsis shoot meristems. Plant J. 64, 668–678 (2010).

    Article  PubMed  CAS  Google Scholar 

  45. Wang, F. X. et al. Chromatin accessibility dynamics and a hierarchical transcriptional regulatory network structure for plant somatic embryogenesis. Dev. Cell 54, 742–757 (2020).

    Article  PubMed  CAS  Google Scholar 

  46. Xu, M., Du, Q., Tian, C., Wang, Y. & Jiao, Y. Stochastic gene expression drives mesophyll protoplast regeneration. Sci. Adv. 7, eabg8466 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Bie, X. M. et al. Trichostatin A and sodium butyrate promotes plant regeneration in common wheat. Plant Signal. Behav. 15, 1820681 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Jiang, F. et al. Trichostatin A increases embryo and green plant regeneration in wheat. Plant Cell Rep. 36, 1701–1706 (2017).

    Article  PubMed  CAS  Google Scholar 

  49. Zhao, N. et al. Systematic analysis of differential H3K27me3 and H3K4me3 deposition in callus and seedling reveals the epigenetic regulatory mechanisms involved in callus formation in rice. Front. Genet. 11, 766 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Daimon, Y., Takabe, K. & Tasaka, M. The CUP-SHAPED COTYLEDON genes promote adventitious shoot formation on calli. Plant Cell Physiol. 44, 113–121 (2003).

    Article  PubMed  CAS  Google Scholar 

  51. Zhai, N. & Xu, L. Pluripotency acquisition in the middle cell layer of callus is required for organ regeneration. Nat. Plants 7, 1453–1460 (2021).

    Article  PubMed  CAS  Google Scholar 

  52. Liu, W. et al. Transcriptional landscapes of de novo root regeneration from detached Arabidopsis leaves revealed by time-lapse and single-cell RNA sequencing analyses. Plant Commun. 3, 100306 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  54. International Wheat Genome Sequencing Consortium (IWGSC). Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361, eaar7191 (2018).

    Article  Google Scholar 

  55. Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    Article  PubMed  CAS  Google Scholar 

  58. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016).

    Article  PubMed  CAS  Google Scholar 

  60. Mi, H., Muruganujan, A., Ebert, D., Huang, X. & Thomas, P. D. PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 47, D419–D426 (2019).

    Article  PubMed  CAS  Google Scholar 

  61. Tian, F., Yang, D. C., Meng, Y. Q., Jin, J. & Gao, G. PlantRegMap: charting functional regulatory maps in plants. Nucleic Acids Res. 48, D1104–D1113 (2020).

    PubMed  CAS  Google Scholar 

  62. Wu, T. et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation 2, 100141 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  63. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Ramírez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Thorvaldsdóttir, H., Robinson, J. T. & Mesirov, J. P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief. Bioinform. 14, 178–192 (2013).

    Article  PubMed  Google Scholar 

  66. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Yu, G., Wang, L. G. & He, Q. Y. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 31, 2382–2383 (2015).

    Article  PubMed  CAS  Google Scholar 

  69. Ross-Innes, C. S. et al. Differential oestrogen receptor binding is associated with clinical outcome in breast cancer. Nature 481, 389–393 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Grant, C. E., Bailey, T. L. & Noble, W. S. FIMO: scanning for occurrences of a given motif. Bioinformatics 27, 1017–1018 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Li, Z. et al. Identification of transcription factor binding sites using ATAC-seq. Genome Biol. 20, 45 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Zhou, Y. et al. Triticum population sequencing provides insights into wheat adaptation. Nat. Genet. 52, 1412–1422 (2020).

    Article  PubMed  CAS  Google Scholar 

  73. Leiboff, S. & Hake, S. Reconstructing the transcriptional ontogeny of maize and sorghum supports an inverse hourglass model of inflorescence development. Curr. Biol. 29, 3410–3419 (2019).

    Article  PubMed  CAS  Google Scholar 

  74. Levin, M. et al. The mid-developmental transition and the evolution of animal body plans. Nature 531, 637–641 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Hoang, T. et al. Gene regulatory networks controlling vertebrate retinal regeneration. Science 370, eabb8598 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Kinsella, R. J. et al. Ensembl BioMarts: a hub for data retrieval across taxonomic space. Database 2011, bar030 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Lemmon, Z. H. et al. The evolution of inflorescence diversity in the nightshades and heterochrony during meristem maturation. Genome Res. 26, 1676–1686 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Schep, A. N., Wu, B., Buenrostro, J. D. & Greenleaf, W. J. chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data. Nat. Methods 14, 975–978 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Chen, T. et al. The genome sequence archive family: toward explosive data growth and diverse data types. Genom. Proteom. Bioinform. 19, 578–583 (2021).

    Article  Google Scholar 

  81. CNCB-NGDC Members and Partners. Database resources of the National Genomics Data Center, China National Center for Bioinformation in 2022. Nucleic Acids Res. 50, D27–D38 (2022).

Download references

Acknowledgements

This research was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA24010204 to J.X.), the National Natural Sciences Foundation of China (31730008 to X.S.Z.), the National Key Research and Development Program of China (2021YFD1201500 to J.X.) and the Major Basic Research Program of Shandong Natural Science Foundation (ZR2021ZD31 to X.S.Z.).

Author information

Authors and Affiliations

Authors

Contributions

J.X., X.S.Z. and X. Liu designed and supervised the research and wrote the manuscript. X.M.B. did the sample collection and in situ hybridization; M.L. performed plasmid construction and RT–qPCR. X.M.B. and C.Z. conducted wheat transformation; X. Lin and X.M.B. performed CUT&Tag, ATAC-seq and RNA-seq experiments; H.W. and X.Z. conducted the reporter assay; X. Liu performed data analysis. X. Liu, X.M.B., Y.Y. and J.X. prepared all the figures. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Xian Sheng Zhang or Jun Xiao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Wendy Harwood, Kenneth Birnbaum and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Overview of epigenome data of wheat regeneration.

a, Principal component analysis of H3K27me3, H3K4me3 and H3K27ac. b, Pearson correlation analysis of all epigenomic data. PCC: Pearson correlation coefficient. c, Epigenetic profiles on gene sets with different expression levels (data from DAI 6 stage); No, Low, Middle and High represent the level of gene expression; TSS: transcription start site, TES: transcription end site. d, Number and proportion of differentially marked peaks by H3K27me3, H3K27ac and H3K4me3 among different induction stages.

Extended Data Fig. 2 Chromatin dynamic during wheat regeneration.

a, Transcription and epigenetic modification tracks for TaLEC2_3D, TaWOX11_2A TaE2Fa_6A, TaBBM_3A, TaLBD17_4B and TaWOX5_3D. Gene expression data shown as mean values +/− s.d. of 3 replicates. b, Upset plot shows DEGs regulated by chromatin accessibility, H3K27me3 and H3K4me3 in C3 and C4. c, Heatmap shows transcriptional, chromatin accessibility, H3K27me3 and H3K4me3 dynamic of 1,116 DEGs. ## represent DEGs that is simultaneously regulated by chromatin accessibility, H3K27me3 and H3K4me3. d, Heatmap shows transcriptional, chromatin accessibility, and H3K4me3 dynamic of 4,254 DEGs. ### represent DEGs that is regulated by both chromatin accessibility and H3K4me3. e, GO enrichment analysis of 4,254 DEGs. FE: fold enrichment.

Extended Data Fig. 3 Comprehensive analysis of ARF target genes.

a, Methods to identify ARF and type-B ARR target genes. b, GO enrichment analysis for ARFs target genes. c, Dynamic of chromatin accessibility and histone modification (H3K27me3, H3K27ac, H3K4me3) near AuxRE. The random background consists of randomly selected regions from other TF binding sites.

Extended Data Fig. 4 Construction of TRN of wheat regeneration.

a, Pipeline for TRN construction. b, Location distribution of footprint within the peak of ATAC-seq (data from DAI 6 stage). c, Distribution of the width of TF footprint (data from DAI 6 stage). d, Numbers of footprint at different stages. e, Sequence conservation analysis at footprint sites; The background is randomly selected intergenic regions outside the open chromatin and coding regions; All regions are truncated to 25 bp. f, Protection scores dynamic of differential footprint; Protection score reflects the chromatin accessibility of footprint. g, Overview of the TRN of wheat regeneration. h, Two transcriptional regulatory modes during wheat regeneration. i, A network of functional related TFs in regulatory mode Type I. j, A network of functional related TFs in regulatory mode Type II.

Extended Data Fig. 5 The network of TaBBM and TaWOX5.

a, GO enrichment analysis of TaBBM’s target genes. b, Enriched TF family of TaBBM’s target genes. Front size shows degree of enrichment (–Log10(p.adj)). c, The network of TaBBM. d, GO enrichment analysis of TaWOX5’s target genes. e, Enriched TF family of TaWOX5’s target genes. Front size shows degree of enrichment (–Log10(p.adj)). f, Network of TaWOX5. g, Intersection of TaWOX5 target genes and DEGs caused by TaWOX5 transformation (two sided Fisher’s exact test). NET represents the target genes of TaWOX5 in the TRN. DEG represents the DEGs of TaWOX5 transformation compared GUS transformation at DAI 6 and DAI 9. h, The expression patterns of TaREV and TaSOUL-1 of transformation of GUS and TaWOX5 at DAI 6 and DAI 9 (two sided Student’s t-test). Data shown as mean values +/− s.d. of 3 replicates.

Extended Data Fig. 6 Differences in transcription and chromatin accessibility between Fielder and JM22.

a, Heatmap of 446 TFs in Fielder and JM22. Similar and Distinct refer to the similar or distinct transcription patterns between Fielder and JM22. b, Transcription and chromatin accessibility tracks for TaBBM_3A, TaDOF3.4_2B TaREV_4B and TaSCR_4B. Gene expression data shown as mean values + /- s.d. of 3 replicates. c, Transcription and chromatin accessibility tracks for WOX in Fielder and JM22. Dotted lines indicate significant SNPs associated with callus differentiation rate. Gene expression data shown as mean values +/− s.d. of 3 replicates. d, Callus differentiation rates of two haplotypes divided by three SNPs in Extended Data Fig. 6c (one sided Student’s t-test). Boxplot: median (horizontal line), quartiles (top and bottom boundaries), whiskers (minimum and maximum values excluding outliers), outliers (individual points).

Extended Data Fig. 7 Comparative analysis between wheat and Arabidopsis.

a, Principal component analysis of RNA-seq and ATAC-seq dataset during wheat and Arabidopsis regeneration. b, The expression pattern of AtWOX11, AtWOX12, AtWOX5 and AtWOX7 during Arabidopsis regeneration. Gene expression data shown as mean values +/− s.d. of 3 replicates. c, Motif activity dynamic during regeneration in wheat and Arabidopsis; Motif activity represents the chromatin accessibility at the TF binding sites. d, K-means clustering analysis of DEGs in Arabidopsis. e, TF family enrichment analysis of genes with similar expression pattern in C1. f, The footprint of DOF5.6 in Arabidopsis at different induction stages. g, TF family enrichment analysis of genes in Arabidopsis cluster A3. h, Motif activity dynamic of LBDs in wheat and Arabidopsis; Activity score reflects the chromatin accessibility.

Extended Data Fig. 8 Expression and potential targets of DOFs during regeneration.

a, The expression heatmap of DOF TFs during wheat regeneration. The orthologs in Arabidopsis are shown. b, ATAC-seq footprint of DOF3.4 at different induction stages. c, The functional related target genes of TaDOF5.6 in TRN. d, The functional related target genes of TaDOF3.4 in TRN.

Extended Data Fig. 9 Normal growth of TaDOF5.6 and TaDOF3.4 transgenic wheat plants.

a, The growth status of TaDOF5.6 and TaDOF3.4 transgenic T0 plants with healthy shoots and roots. b, Seeds produced by overexpressing TaDOF5.6 and TaDOF3.4 transgenic T0 plants. c, The TaDOF5.6 and TaDOF3.4 transgenic T1 plants growth normal and fertile. d, Phenotypic statistics of TaDOF5.6 and TaDOF3.4 transgenic plants. Tiller number and flowering time were counted from transgenic T1 plants. Grain length and grain width were measured from transgenic T0 plants (two sided Student’s t-test).

Supplementary information

Reporting Summary

Supplementary Tables

Supplementary Tables 1–34.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Bie, X.M., Lin, X. et al. Uncovering the transcriptional regulatory network involved in boosting wheat regeneration and transformation. Nat. Plants 9, 908–925 (2023). https://doi.org/10.1038/s41477-023-01406-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-023-01406-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing