Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Constructing artificial gap junctions to mediate intercellular signal and mass transport

Abstract

Natural gap junctions are a type of channel protein responsible for intercellular signalling and mass communication. However, the scope of applications for these proteins is limited as they cannot be prepared at a large scale and are unable to spontaneously insert into cell membranes in vitro. The construction of artificial gap junctions may provide an alternative strategy for preparing analogues of the natural proteins and bottom–up building blocks necessary for the synthesis of artificial cells. Here we show the construction of artificial gap junction channels from unimolecular tubular molecules consisting of alternately arranged positively and negatively charged pillar[5]arene motifs. These molecules feature a hydrophobic–hydrophilic–hydrophobic triblock structure that allows them to efficiently insert into two adjacent plasma membranes and stretch across the gap between the two membranes to form gap junctions. Similar to natural gap junction channels, the synthetic channels could mediate intercellular signal coupling and reactive oxygen species transmission, leading to cellular activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structures of natural and artificial gap channels.
Fig. 2: Formation of tubular structures and their co-assembly with vesicles.
Fig. 3: Ion transport behaviours of channels 13.
Fig. 4: Ability of the channel to form artificial gap junctions.
Fig. 5: Intercellular signal coupling recording by whole-cell patch clamping (current-clamp mode) of two paired cells.
Fig. 6: Intercellular ROS transmission mediated by artificial gap junctions when C6 cells were incubated with FCCP-exposed cells.

Similar content being viewed by others

Data availability

All data related to this study are available within the paper and its Supplementary Information. Source data are provided with this paper.

References

  1. Pohorille, A. & Deamer, D. Artificial cells: prospects for biotechnology. Trends Biotechnol. 20, 123–128 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Hanczyc, M. M., Fujikawa, S. M. & Szostak, J. W. Experimental models of primitive cellular compartments: encapsulation, growth and division. Science 302, 618–622 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gibson, D. G. et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329, 52–56 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Hammer, D. A. & Kamat, N. P. Towards an artificial cell. FEBS Lett. 586, 2882–2890 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Szostak, J. W., Bartel, D. P. & Luisi, P. L. Synthesizing life. Nature 409, 387–390 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Deamer, D. A giant step towards artificial life? Trends Biotechnol. 23, 336–338 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Bedau, M. et al. Life after the synthetic cell. Nature 465, 422–424 (2010).

    Article  PubMed  Google Scholar 

  8. Zhang, Y., Ruder, W. C. & LeDuc, P. R. Artificial cells: building bioinspired systems using small-scale biology. Trends Biotechnol. 26, 14–20 (2008).

    Article  PubMed  Google Scholar 

  9. Hille, B. Ionic Channels of Excitable Membranes (Sinauer Associates, 2001).

  10. Latorraca, N. R., Venkatakrishnan, A. J. & Dror, R. O. GPCR dynamics: structures in motion. Chem. Rev. 117, 139–155 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Palivan, C. G. et al. Bioinspired polymer vesicles and membranes for biological and medical applications. Chem. Soc. Rev. 45, 377–411 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Otto, S. An approach to the de novo synthesis of life. Acc. Chem. Res. 55, 145–155 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Zheng, S., Huang, L., Sun, Z. & Barboiu, M. Self-assembled artificial ion-channels toward natural selection of functions. Angew. Chem. Int. Ed. 60, 566–597 (2021).

    Article  CAS  Google Scholar 

  14. Gokel, G. W. & Negin, S. Synthetic ion channels: from pores to biological applications. Acc. Chem. Res. 46, 2824–2833 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Matile, S. & Fyles, T. Transport across membranes. Acc. Chem. Res. 46, 2741–2742 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Muraoka, T. et al. A synthetic ion channel with anisotropic ligand response. Nat. Commun. 11, 2924 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Akerfeldt, K. S., Lear, J. D., Wasserman, Z. R., Chung, L. A. & DeGrado, W. F. Synthetic peptides as models for ion channel proteins. Acc. Chem. Res. 26, 191–197 (1993).

    Article  CAS  Google Scholar 

  18. Davis, A. P., Sheppard, D. N. & Smith, B. D. Development of synthetic membrane transporters for anions. Chem. Soc. Rev. 36, 348–357 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Caltagirone, C. & Gale, P. A. Anion receptor chemistry: highlights from 2007. Chem. Soc. Rev. 38, 520–563 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Davis, J. T., Okunola, O. & Quesada, R. Recent advances in the transmembrane transport of anions. Chem. Soc. Rev. 39, 3843–3862 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Matile, S., Vargas Jentzsch, A., Montenegro, J. & Fin, A. Recent synthetic transport systems. Chem. Soc. Rev. 40, 2453–2474 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Yang, J. et al. Artificial transmembrane ion transporters as potential therapeutics. Chem 7, 3256–3291 (2021).

    Article  CAS  Google Scholar 

  23. Langton, M. J., Keymeulen, F., Ciaccia, M., Williams, N. H. & Hunter, C. A. Controlled membrane translocation provides a mechanism for signal transduction and amplification. Nat. Chem. 9, 426–430 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Lister, F. G. A., Le Bailly, B. A. F., Webb, S. J. & Clayden, J. Ligand-modulated conformational switching in a fully synthetic membrane-bound receptor. Nat. Chem. 9, 420–425 (2017).

    Article  CAS  Google Scholar 

  25. Langton, M. J. Engineering of stimuli-responsive lipid-bilayer membranes using supramolecular systems. Nat. Rev. Chem. 5, 46–61 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Ge, Z. et al. Programming cell-cell communications with engineered cell origami clusters. J. Am. Chem. Soc. 142, 8800–8808 (2020).

    Article  PubMed  Google Scholar 

  27. Sanborn, J. R. et al. Carbon nanotube porins in amphiphilic block copolymers as fully synthetic mimics of biological membranes. Adv. Mater. 30, 1803355 (2018).

    Article  Google Scholar 

  28. Berco, D. et al. Nanoscale conductive filament with alternating rectification as an artificial synapse building block. ACS Nano 12, 5946–5955 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Fyles, T. M. How do amphiphiles form ion-conducting channels in membranes? Lessons from linear oligoesters. Acc. Chem. Res. 46, 2847–2855 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Webb, S. J. Supramolecular approaches to combining membrane transport with adhesion. Acc. Chem. Res. 46, 2878–2887 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Das, G., Talukdar, P. & Matile, S. Fluorometric detection of enzyme activity with synthetic supramolecular pores. Science 298, 1600–1602 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Kang, X., Cheley, S., Guan, X. & Bayley, H. Stochastic detection of enantiomers. J. Am. Chem. Soc. 128, 10684–10685 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Satake, A., Yamamura, M., Oda, M. & Kobuke, Y. Transmembrane nanopores from porphyrin supramolecules. J. Am. Chem. Soc. 130, 6314–6315 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Boccalon, M., Iengo, E. & Tecilla, P. Metal-organic transmembrane nanopores. J. Am. Chem. Soc. 134, 20310–20313 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Som, A., Reuter, A. & Tew, G. N. Protein transduction domain mimics: the role of aromatic functionality. Angew. Chem. Int. Ed. 51, 980–983 (2012).

    Article  CAS  Google Scholar 

  36. Ghadiri, M. R., Granja, J. R. & Buehler, L. K. Artificial transmembrane ion channels from self-assembling peptide nanotubes. Nature 369, 301–304 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Kumar, N. M. & Gilula, N. B. The gap junction communication channel. Cell 84, 381–388 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Bruzzone, R., White, T. W. & Paul, D. L. Connections with connexins: the molecular basis of direct intercellular signaling. Eur. J. Biochem. 238, 1–27 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Evans, W. H. & Martin, P. E. M. Gap junctions: structure and function. Mol. Membr. Biol. 19, 121–136 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Lee, H.-J. et al. Conformational changes in the human Cx43/GJA1 gap junction channel visualized using cryo-EM. Nat. Commun. 14, 931 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Seoh, S.-A. & Busath, D. Gramicidin tryptophans mediate formamidinium-induced channel stabilization. Biophys. J. 68, 2271–2279 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fa, S., Sakata, Y., Akine, S. & Ogoshi, T. Non-covalent interactions enable the length-controlled generation of discrete tubes capable of guest exchange. Angew. Chem. Int. Ed. 59, 9309–9313 (2020).

    Article  CAS  Google Scholar 

  43. Vögeli, B. The nuclear Overhauser effect from a quantitative perspective. Prog. Nucl. Magn. Reson. Spectrosc. 78, 1–46 (2014).

    Article  PubMed  Google Scholar 

  44. Chui, J. K. W. & Fyles, T. M. Ionic conductance of synthetic channels: analysis, lessons and recommendations. Chem. Soc. Rev. 41, 148–175 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Cruickshank, C. C., Minchin, R. F., Le Dain, A. C. & Martinac, B. Estimation of the pore size of the large-conductance mechanosensitive ion channel of Escherichia coli. Biophys. J. 73, 1925–1931 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stephan, J., Eitelmann, S. & Zhou, M. Approaches to study gap junctional coupling. Front. Cell. Neurosci. 15, 640406 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Toyofuku, T. et al. Intercellular calcium signaling via gap junction in connexin-43-transfected cells. J. Biol. Chem. 273, 1519–1528 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Ma, B. et al. Gap junction coupling confers isopotentiality on astrocyte syncytium. Glia 64, 214–226 (2016).

    Article  PubMed  Google Scholar 

  49. Spray, D. C. et al. Gap junctions and bystander effects: good samaritans and executioners. WIREs Membr. Transp. Signal 2, 1–15 (2013).

    Article  CAS  Google Scholar 

  50. Martindale, J. L. & Holbrook, N. J. Cellular response to oxidative stress: signaling for suicide and survival. J. Cell. Physiol. 192, 1–15 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Brennan, J. P. et al. Mitochondrial uncoupling, with low concentration FCCP, induces ROS-dependent cardioprotection independent of KATP channel activation. Cardiovasc. Res. 72, 313–321 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the National Key Research and Development Program of China (grant no. 2022YFA1203401, J.-L.H.), the National Natural Science Foundation of China (NSFC; grant nos. 21921003 and 21971046, J.-L.H.) and the Science and Technology Commission of Shanghai Municipality (STCSM; grant no. 22JC1403700, J.-L.H.) for financial support. We acknowledge X. Li (Shenzhen University) and G. Tang (Fudan University) for mass spectrum measurements and W. Wang (Fudan University) for helpful discussions on the MD simulations.

Author information

Authors and Affiliations

Authors

Contributions

Y.-H.F., Z.-T.L. and J.-L.H. conceived and designed the channel structures and experiments. Y.-H.F., Y.-F.H., T.L. and G.-W.Z. synthesized and characterized the channel molecules. Y.-H.F. investigated the self-assembly structure, and the intercellular signal and mass transport behaviours of the channel molecules. Y.-L.W. performed the MD simulations. W.-X.C. performed the 2D NMR experiments. Y.-H.F., Y.-F.H., Y.-L.W., W.-X.C. and J.-L.H. analysed the data and prepared the figures. Y.-H.F. and J.-L.H. wrote the paper.

Corresponding author

Correspondence to Jun-Li Hou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Kazushi Kinbara, Chien-Lung Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Experimental Procedures and Methods, Figs. 1–59 and Tables 1 and 2.

Reporting Summary

Supplementary Data 1

Initial and final configurations of the MD trajectories of channels 14.

Source data

Source Data Fig. 2

Source data for 2D 1H NMR NOESY spectrum (panel a) and DLS measurement plots (panel c).

Source Data Fig. 3

Source data for the current traces (panel a) and analysis on channel open events (panel b).

Source Data Fig. 4

Source data for panels a, b and c.

Source Data Fig. 5

Source data for the recorded membrane potential traces (panels b, c and d).

Source Data Fig. 6

Source data for panels b, c and d.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, YH., Hu, YF., Lin, T. et al. Constructing artificial gap junctions to mediate intercellular signal and mass transport. Nat. Chem. (2024). https://doi.org/10.1038/s41557-024-01519-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41557-024-01519-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing