Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Formylation boosts the performance of light-driven overcrowded alkene-derived rotary molecular motors

Abstract

Artificial molecular motors and machines constitute a critical element in the transition from individual molecular motion to the creation of collective dynamic molecular systems and responsive materials. The design of artificial light-driven molecular motors operating with high efficiency and selectivity constitutes an ongoing fundamental challenge. Here we present a highly versatile synthetic approach based on Rieche formylation that boosts the quantum yield of the forward photoisomerization reaction while reaching near-perfect selectivity in the steps involved in the unidirectional rotary cycle and drastically reducing competing photoreactions. This motor is readily accessible in its enantiopure form and operates with nearly quantitative photoconversions. It can easily be functionalized further and outperforms its direct predecessor as a reconfigurable chiral dopant in cholesteric liquid crystal materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conceptual illustration of rotary motion of typical molecular motors and boosted molecular motor system.
Fig. 2: Unidirectional rotary cycle of motor 1.
Fig. 3: Comparison of motors 1 and 2 and transient absorption spectroscopy studies of 1.
Fig. 4: Synthesis and characterization of second-generation motors.
Fig. 5: Multistate characterizations and application in LC doping.

Similar content being viewed by others

Data availability

The online version of this paper provides Supplementary Information, encompassing supplementary figures, general methods, detailed experimental and analytical data, NMR spectra and SFC chromatograms, as well as all other supporting data for the study. Source data are provided with this paper. All the unprocessed data are available from the corresponding author upon reasonable request. Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre (CCDC) under deposition numbers CCDC 2170238 (4st), CCDC 2170239 (Z-1st), CCDC 2170240 (E-1st), CCDC 2264532 (Z-S1st) and CCDC 2264533 (E-S1st). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Kinbara, K. & Aida, T. Toward intelligent molecular machines: directed motions of biological and artificial molecules and assemblies. Chem. Rev. 105, 1377–1400 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Goodsell, D. S. Bionanotechnology: Lessons from Nature (Wiley, 2004).

  3. Balzani, V., Credi, A., Raymo, F. M. & Stoddart, J. F. Artificial molecular machines. Angew. Chem. Int. Ed. 39, 3348–3391 (2000).

    Article  CAS  Google Scholar 

  4. Sauvage, J. P. et al. (eds) Molecular Machines and Motors (Springer, 2001).

  5. Browne, W. R. & Feringa, B. L. Making molecular machines work. Nat. Nanotechnol. 1, 25–35 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Kassem, S. et al. Artificial molecular motors. Chem. Soc. Rev. 46, 2592–2621 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Feng, Y. et al. Molecular pumps and motors. J. Am. Chem. Soc. 143, 5569–5591 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Coskun, A., Banaszak, M., Astumian, R. D., Stoddart, J. F. & Grzybowski, B. A. Great expectations: can artificial molecular machines deliver on their promise? Chem. Soc. Rev. 41, 19–30 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Brandt, J. R., Salerno, F. & Fuchter, M. J. The added value of small-molecule chirality in technological applications. Nat. Rev. Chem. 1, 0045 (2017).

    Article  CAS  Google Scholar 

  10. Koumura, N., Zijistra, R. W. J., Van Delden, R. A., Harada, N. & Feringa, B. L. Light-driven monodirectional molecular rotor. Nature 401, 152–155 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Roke, D., Wezenberg, S. J. & Feringa, B. L. Molecular rotary motors: unidirectional motion around double bonds. Proc. Natl Acad. Sci. USA 115, 9423–9431 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kudernac, T. et al. Electrically driven directional motion of a four-wheeled molecule on a metal surface. Nature 479, 208–211 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Van Delden, R. A. et al. Unidirectional molecular motor on a gold surface. Nature 437, 1337–1340 (2005).

    Article  PubMed  Google Scholar 

  14. Chen, J., Wezenberg, S. J. & Feringa, B. L. Intramolecular transport of small-molecule cargo in a nanoscale device operated by light. Chem. Commun. 52, 6765–6768 (2016).

    Article  CAS  Google Scholar 

  15. Chen, S. et al. Photoactuating artificial muscles of motor amphiphiles as an extracellular matrix mimetic scaffold for mesenchymal stem cells. J. Am. Chem. Soc. 144, 3543–3553 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang, J. & Feringa, B. L. Dynamic control of chiral space. Science 331, 1429–1423 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Wezenberg, S. J., Croisetu, C. M., Stuart, M. C. A. & Feringa, B. L. Reversible gel–sol photoswitching with an overcrowded alkene-based bis-urea supergelator. Chem. Sci. 7, 4341–4346 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen, J. et al. Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors. Nat. Chem. 10, 132–138 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Li, Q. et al. Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors. Nat. Nanotechnol. 10, 161–165 (2015).

    Article  PubMed  Google Scholar 

  20. Foy, J. T. et al. Dual-light control of nanomachines that integrate motor and modulator subunits. Nat. Nanotechnol. 12, 540–545 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Eelkema, R. et al. Nanomotor rotates microscale objects. Nature 440, 163–163 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Orlova, T. et al. Revolving supramolecular chiral structures powered by light in nanomotor-doped liquid crystals. Nat. Nanotechnol. 13, 304–308 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Danowski, W. et al. Unidirectional rotary motion in a metal–organic framework. Nat. Nanotechnol. 14, 488–494 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Castiglioni, F. et al. Modulation of porosity in a solid material enabled by bulk photoisomerization of an overcrowded alkene. Nat. Chem. 12, 595–602 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Klok, M. et al. MHz unidirectional rotation of molecular rotary motors. J. Am. Chem. Soc. 130, 10484–10485 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Pollard, M. M., Meetsma, A. & Feringa, B. L. A redesign of light-driven rotary molecular motors. Org. Biomol. Chem. 6, 507–512 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Ruangsupapichat, N., Pollard, M. M., Harutyunyan, S. R. & Feringa, B. L. Reversing the direction in a light-driven rotary molecular motor. Nat. Chem. 3, 53–60 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Sheng, J. et al. Designing P-type bi-stable overcrowded alkene-based chiroptical photoswitches. Chem. Sci. 14, 4328–4336 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Qu, D. H. & Feringa, B. L. Controlling molecular rotary motion with a self-complexing lock. Angew. Chem. Int. Ed. 49, 1107–1110 (2010).

    Article  CAS  Google Scholar 

  30. Faulkner, A., Van Leeuwen, T., Feringa, B. L. & Wezenberg, S. J. Allosteric regulation of the rotational speed in a light-driven molecular motor. J. Am. Chem. Soc. 138, 13597–13603 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Geertsema, E. M., Van Der Molen, S. J., Martens, M. & Feringa, B. L. Optimizing rotary processes in synthetic molecular motors. Proc. Natl Acad. Sci. USA 106, 16919–16924 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Klok, M., Browne, W. R. & Feringa, B. L. Kinetic analysis of the rotation rate of light-driven unidirectional molecular motors. Phys. Chem. Chem. Phys. 11, 9124–9131 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Pooler, D. R. S., Lubbe, A. S., Crespi, S. & Feringa, B. L. Designing light-driven rotary molecular motors. Chem. Sci. 12, 14964–14986 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. García-López, V., Liu, D. & Tour, J. M. Light-activated organic molecular motors and their applications. Chem. Rev. 120, 79–124 (2020).

    Article  PubMed  Google Scholar 

  35. Aprahamian, I. The future of molecular machines. ACS Cent. Sci. 6, 347–358 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sheng, J., Pooler, D. R. S. & Feringa, B. L. Enlightening dynamic functions in molecular systems by intrinsically chiral light-driven molecular motors. Chem. Soc. Rev. 52, 5875–5891 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Conyard, J. et al. Ultrafast dynamics in the power stroke of a molecular rotary motor. Nat. Chem. 4, 547–551 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Conyard, J., Cnossen, A., Browne, W. R., Feringa, B. L. & Meech, S. R. Chemically optimizing operational efficiency of molecular rotary motors. J. Am. Chem. Soc. 136, 9692–9700 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Wiley, T. E., Konar, A., Miller, N. A., Spears, K. G. & Sension, R. J. Primed for efficient motion: ultrafast excited state dynamics and optical manipulation of a four stage rotary molecular motor. J. Phys. Chem. A 122, 7548–7558 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Greb, L. & Lehn, J. M. Light-driven molecular motors: imines as four-step or two-step unidirectional rotors. J. Am. Chem. Soc. 136, 13114–13117 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Roke, D., Sen, M., Danowski, W., Wezenberg, S. J. & Feringa, B. L. Visible-light-driven tunable molecular motors based on oxindole. J. Am. Chem. Soc. 141, 7622–7627 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Huber, L. A. et al. Direct observation of hemithioindigo-motor unidirectionality. Angew. Chem. Int. Ed. 56, 14536–14539 (2017).

    Article  CAS  Google Scholar 

  43. Franken, L. E. et al. Solvent mixing to induce molecular motor aggregation into bowl-shaped particles: underlying mechanism, particle nature, and application to control motor behavior. J. Am. Chem. Soc. 140, 7860–7868 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen, S. et al. Dynamic assemblies of molecular motor amphiphiles control macroscopic foam properties. J. Am. Chem. Soc. 142, 10163–10172 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhu, Q. et al. Multistate switching of spin selectivity in electron transport through light‐driven molecular motors. Adv. Sci. 8, 2101773 (2021).

    Article  CAS  Google Scholar 

  46. Xu, F. et al. Dynamic control of a multistate chiral supramolecular polymer in water. J. Am. Chem. Soc. 144, 6019–6027 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Polli, D. et al. Conical intersection dynamics of the primary photoisomerization event in vision. Nature 467, 440–443 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Strambi, A., Durbeej, B., Ferré, N. & Olivucci, M. Anabaena sensory rhodopsin is a light-driven unidirectional rotor. Proc. Natl Acad. Sci. USA 107, 21322–21326 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Garcı́a, O., Nicolás, E. & Albericio, F. O-Formylation of electron-rich phenols with dichloromethyl methyl ether and TiCl4. Tetrahedron Lett. 44, 4961–4963 (2003).

    Article  Google Scholar 

  50. Irie, M., Fukaminato, T., Matsuda, K. & Kobatake, S. Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem. Rev. 114, 12174–12277 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Feringa, B. L. & Browne, W. R. Molecular Switches (Wiley-VCH Verlag, 2011).

  52. Corra, S. et al. Kinetic and energetic insights into the dissipative non-equilibrium operation of an autonomous light-powered supramolecular pump. Nat. Nanotechnol. 17, 746–751 (2022).

    Article  CAS  PubMed  Google Scholar 

  53. Sangchai, T., Al Shehimy, S., Penocchio, E. & Ragazzon, G. Artificial molecular ratchets: tools enabling endergonic processes. Angew. Chem. Int. Ed. 62, e202309501 (2023).

    Article  CAS  Google Scholar 

  54. Kazaryan, A., Lan, Z., Schäfer, L. V., Thiel, W. & Filatov, M. Surface hopping excited-state dynamics study of the photoisomerization of a light-driven fluorene molecular rotary motor. J. Chem. Theory Comput. 7, 2189–2199 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Ryabchun, A. et al. Helix inversion controlled by molecular motors in multistate liquid crystals. Adv. Mater. 32, 2004420 (2020).

    Article  Google Scholar 

  56. de Gennes, P.-G. & Prost, J. The Physics of Liquid Crystals (Clarendon Press, 2013).

  57. Wang, X., Miller, D. S., Bukusoglu, E., De Pablo, J. J. & Abbott, N. L. Topological defects in liquid crystals as templates for molecular self-assembly. Nat. Mater. 15, 106–112 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Gerber, P. R. On the determination of the cholesteric screw sense by the Grandjean-Cano-method. Z. Naturforsch. 35a, 619–622 (1980).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the China Scholarship Council (CSC PhD fellowship no. 201808330459 to J.S.) and financial support from The Netherlands Organization for Scientific Research (NWO-CW), the Dutch Ministry of Education, Culture and Science (Gravitation programme no. 024.001.035). We acknowledge R. Sneep for mass spectral analysis and SFC training. We thank R. Toyoda for the X-ray structure analysis; Q. Zhang for fruitful discussions; and S. Wezenberg, J. de Jong and A. Faulker for work on structurally related motors. W.D. greatly acknowledges G. Ragazzon for the discussion on the kinetic asymmetry of light-driven motors. Correspondence and requests for materials should be sent to Ben Feringa b.l.feringa@rug.nl.

Author information

Authors and Affiliations

Authors

Contributions

J.S., W.D. and B.L.F. conceived the project. B.L.F. and W.D. guided and supervised the research. J.S. and W.D. synthesized the compounds. J.S. led the project and carried out all experimental studies and characterizations. S.C. conducted computations. A.S.S. and M.P.D. performed the transient absorption spectroscopy measurements and 1H NMR QY measurements. J.H., A.R. and J.S. performed the LC doping measurements. J.S., W.D., W.J.B. and B.L.F. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Ben L. Feringa.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Stefano Corra and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–65, Tables 1–10 and Discussion.

Supplementary Data 1

Raw NMR data for Figs. 2c, 4d,g and 5a.

Supplementary Data 2

Crystallographic data for compound 4st; CCDC reference 2170238.

Supplementary Data 3

Crystallographic data for compound Z-1st; CCDC reference 2170239.

Supplementary Data 4

Crystallographic data for compound E-1st; CCDC reference 2170240.

Supplementary Data 5

Crystallographic data for compound Z-S1st; CCDC reference 2264532.

Supplementary Data 6

Crystallographic data for compound E-S1st; CCDC reference 2264533.

Source data

Source Data Fig. 2

Compilation of UV–visible spectra. Source Data Fig. 3 Compilation of UV–visible spectra, time-course photoconversion and histogram of QY along uncertainties of the fit. Source Data Fig. 4 Compilation of UV–visible spectra. Source Data Fig. 5 Compilation of CD spectra.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, J., Danowski, W., Sardjan, A.S. et al. Formylation boosts the performance of light-driven overcrowded alkene-derived rotary molecular motors. Nat. Chem. (2024). https://doi.org/10.1038/s41557-024-01521-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41557-024-01521-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing