Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Asymmetric impacts of forest gain and loss on tropical land surface temperature

Abstract

Forest gain in the tropics can cool the land surface by altering the energy budget through biophysical processes. Many countries have adopted forestation as part of their strategies for tackling climate warming. However, the biophysical effects of forest gain have generally been estimated based on the symmetrical reversal of ongoing tropical forest loss. Here we use multiple sources of satellite remote sensing data to explore the sensitivities of land surface temperature to forest gain and loss, and find forest loss warming the surface by 0.56 ± 0.12 °C and forest gain cooling the surface by 0.10 ± 0.09 °C. This asymmetry indicates weaker biophysical effects of forest gain on local temperature, which we attribute to contrasting changes of vegetation properties, such as leaf area and greenness. We find that current Earth system models fail to capture the observed asymmetry and thus could overestimate the cooling effect of afforestation in future. This highlights the need to improve representation of forest demographic impacts on biophysics-related vegetation properties, such as leaf area index, albedo and canopy structure, to better estimate the effects of tropical forestation on surface temperature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: LST responses to forest cover change during 2003–2013 in the tropics.
Fig. 2: Spatial pattern of the differences between the sensitivities of daytime LST (13:30) to forest loss and gain (\(\Delta{\boldsymbol{\gamma }}_{{\mathbf{LST}}}={\boldsymbol{\gamma }}_{{\mathbf{LST}}}^{{\mathbf{loss}}}-{\boldsymbol{\gamma }}_{{\mathbf{LST}}}^{{\mathbf{gain}}}\)) during 2003 and 2013.
Fig. 3: Impacts on vegetation properties of forest cover loss and gain in the tropics.
Fig. 4: Impacts on surface temperature of forest cover change (γTs) in the tropics estimated using CMIP6 models.

Similar content being viewed by others

Data availability

All data used in the study are open access: MODIS MYD11A2 (https://lpdaac.usgs.gov/products/myd11a2v061/); MODIS MOD11A2 (https://lpdaac.usgs.gov/products/mod11a2v061/); GFCC (https://lpdaac.usgs.gov/products/gfcc30tcv003/); Hansen GFC (https://storage.googleapis.com/earthenginepartners-hansen/GFC-2020-v1.8/download.html); MODIS MOD44B (https://lpdaac.usgs.gov/products/mod44bv061/); MODIS MCD12Q1 (https://lpdaac.usgs.gov/products/mcd12q1v061/); ESA CCI land cover (http://maps.elie.ucl.ac.be/CCI/viewer/download.php); Hilda+ land cover (https://doi.pangaea.de/10.1594/PANGAEA.921846); GlobeLand30 (https://www.cnopendata.com/en/data/m/meteorological/china-globeLand30.html); SRTMGL3 (https://lpdaac.usgs.gov/products/srtmgl3v003/); MODIS MYD15A2H (https://lpdaac.usgs.gov/products/myd15a2hv061/); MODIS MCD43A4 (https://lpdaac.usgs.gov/products/mcd43a4v061/); MODIS MYD13A1 (https://lpdaac.usgs.gov/products/myd13a1v061/); MODIS MYD16A2 (https://lpdaac.usgs.gov/products/myd16a2v006/); MODIS MCD43A3 (https://lpdaac.usgs.gov/products/mcd43a3v061/); GEDI forest canopy height (https://glad.umd.edu/dataset/gedi/); AGB from ref. 28 (https://doi.org/10.5281/zenodo.6103053); and CMIP6 (https://esgf-node.llnl.gov/search/cmip6/). Source data are provided with this paper.

Code availability

The codes used to analyse data and create the figures are available via figshare at https://doi.org/10.6084/m9.figshare.25239877 (ref. 66). All the processing codes are available from the corresponding author on request.

References

  1. Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

    CAS  Google Scholar 

  2. Law, B.E. et al. Land use strategies to mitigate climate change in carbon dense temperate forests. Proc. Natl Acad. Sci. USA 115, 3663–3668 (2018).

    CAS  Google Scholar 

  3. Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).

    CAS  Google Scholar 

  4. Friedlingstein, P. et al. Global carbon budget 2021. Earth Syst. Sci. Data 14, 1917–2005 (2022).

    Google Scholar 

  5. Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    CAS  Google Scholar 

  6. Lawrence, D. & Vandecar, K. Effects of tropical deforestation on climate and agriculture. Nat. Clim. Change 5, 27–36 (2015).

    Google Scholar 

  7. Devaraju, N., de Noblet-Ducoudré, N., Quesada, B. & Bala, G. Quantifying the relative importance of direct and indirect biophysical effects of deforestation on surface temperature and teleconnections. J. Clim. 31, 3811–3829 (2018).

    Google Scholar 

  8. Duveiller, G., Hooker, J. & Cescatti, A. The mark of vegetation change on Earth’s surface energy balance. Nat. Commun. 9, 679 (2018).

    Google Scholar 

  9. Li, Y. et al. Local cooling and warming effects of forests based on satellite observations. Nat. Commun. 6, 6603 (2015).

    CAS  Google Scholar 

  10. Wickham, J. D., Wade, T. G. & Riitters, K. H. Comparison of cropland and forest surface temperatures across the conterminous United States. Agric. For. Meteorol. 166–167, 137–143 (2012).

    Google Scholar 

  11. Wickham, J. D., Wade, T. G. & Riitters, K. H. Empirical analysis of the influence of forest extent on annual and seasonal surface temperatures for the continental United States. Glob. Ecol. Biogeogr. 22, 620–629 (2013).

    Google Scholar 

  12. Alkama, R. & Cescatti, A. Biophysical climate impacts of recent changes in global forest cover. Science 351, 600–604 (2016).

    CAS  Google Scholar 

  13. Lee, X. et al. Observed increase in local cooling effect of deforestation at higher latitudes. Nature 479, 384–387 (2011).

    CAS  Google Scholar 

  14. Zhang, M. et al. Response of surface air temperature to small-scale land clearing across latitudes. Environ. Res. Lett. 9, 034002 (2014).

    Google Scholar 

  15. Lean, J. & Warrilow, D. A. Simulation of the regional climatic impact of Amazon deforestation. Nature 342, 411–413 (1989).

    Google Scholar 

  16. Betts, R. A. Afforestation cools more or less. Nat. Geosci. 4, 504–505 (2011).

    CAS  Google Scholar 

  17. Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    CAS  Google Scholar 

  18. Song, X.-P. et al. Global land change from 1982 to 2016. Nature 560, 639–643 (2018).

    CAS  Google Scholar 

  19. Winckler, J. et al. Different response of surface temperature and air temperature to deforestation in climate models. Earth Syst. Dyn. 10, 473–484 (2019).

    Google Scholar 

  20. Hansen, M. C., Stehman, S. V. & Potapov, P. V. Quantification of global gross forest cover loss. Proc. Natl Acad. Sci. USA 107, 8650 (2010).

    CAS  Google Scholar 

  21. Asner, G. P. et al. Selective logging in the Brazilian Amazon. Science 310, 480–482 (2005).

    CAS  Google Scholar 

  22. Jassal, R. S., Black, T. A., Spittlehouse, D. L., Brümmer, C. & Nesic, Z. Evapotranspiration and water use efficiency in different-aged Pacific Northwest Douglas-fir stands. Agric. For. Meteorol. 149, 1168–1178 (2009).

    Google Scholar 

  23. Deng, J., Yao, J., Zheng, X. & Gao, G. Transpiration and canopy stomatal conductance dynamics of Mongolian pine plantations in semiarid deserts, Northern China. Agric. Water Manag. 249, 106806 (2021).

    Google Scholar 

  24. Devaraju, N., Bala, G. & Nemani, R. Modelling the influence of land-use changes on biophysical and biochemical interactions at regional and global scales. Plant Cell Environ. 38, 1931–1946 (2015).

    CAS  Google Scholar 

  25. Yang, F. et al. Improved fine-scale tropical forest cover mapping for Southeast Asia using Planet-NICFI and Sentinel-1 Imagery. J. Remote Sens. 3, 0064 (2023).

    Google Scholar 

  26. Cohn, A. S. et al. Forest loss in Brazil increases maximum temperatures within 50 km. Environ. Res. Lett. 14, 084047 (2019).

    Google Scholar 

  27. Potapov, P. et al. Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sens. Environ. 253, 112165 (2021).

    Google Scholar 

  28. Hua, F. et al. The biodiversity and ecosystem service contributions and trade-offs of forest restoration approaches. Science 376, eabl4649 (2022).

    Google Scholar 

  29. IPCC Special Report on Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) (WMO, 2018).

  30. Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Google Scholar 

  31. Ge, J. et al. Evaluation of coupled regional climate models in representing the local biophysical effects of afforestation over continental China. J. Clim. 34, 9879–9898 (2021).

  32. Xu, Z., Mahmood, R., Yang, Z.-L., Fu, C. & Su, H. Investigating diurnal and seasonal climatic response to land use and land cover change over monsoon Asia with the Community Earth System Model. J. Geophys. Res. Atmos. 120, 1137–1152 (2015).

    Google Scholar 

  33. Winckler, J., Reick, C. H., Bright, R. M. & Pongratz, J. Importance of surface roughness for the local biogeophysical effects of deforestation. J. Geophys. Res. Atmos. 124, 8605–8618 (2019).

    CAS  Google Scholar 

  34. Pastor, A. V. et al. The global nexus of food–trade–water sustaining environmental flows by 2050. Nat. Sustain. 2, 499–507 (2019).

    Google Scholar 

  35. Yao, G., Zhang, X., Davidson, E. A. & Taheripour, F. The increasing global environmental consequences of a weakening US–China crop trade relationship. Nat. Food 2, 578–586 (2021).

    Google Scholar 

  36. Betts, R. A. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408, 187–190 (2000).

    CAS  Google Scholar 

  37. Li, Y. et al. Potential and actual impacts of deforestation and afforestation on land surface temperature. J. Geophys. Res. Atmos. 121, 14372–14386 (2016).

  38. Su, Y. et al. Asymmetric influence of forest cover gain and loss on land surface temperature. Nat. Clim. Change 13, 823–831 (2023).

    Google Scholar 

  39. Cunningham, D., Cunningham, P. & Fagan, M. E. Identifying biases in global tree cover products: a case study in Costa Rica. Forests 10, 853 (2019).

    Google Scholar 

  40. Sannier, C., McRoberts, R. E. & Fichet, L.-V. Suitability of global forest change data to report forest cover estimates at national level in Gabon. Remote Sens. Environ. 173, 326–338 (2016).

    Google Scholar 

  41. Lwin, K. K., Ota, T., Shimizu, K. & Mizoue, N. Assessing the importance of tree cover threshold for forest cover mapping derived from global forest cover in Myanmar. Forests 10, 1062 (2019).

    Google Scholar 

  42. García, P. R., Scaccia, L. & Salvati, L. An accuracy assessment of three forest cover databases in Colombia. Environ. Ecol. Stat. 30, 443–475 (2023).

    Google Scholar 

  43. Tropek, R. et al. Comment on ‘High-resolution global maps of 21st-century forest cover change’. Science 344, 981–981 (2014).

    CAS  Google Scholar 

  44. Gomes, L. et al. Agricultural expansion in the Brazilian Cerrado: increased soil and nutrient losses and decreased agricultural productivity. Land 8, 12 (2019).

    Google Scholar 

  45. Rausch, L. L. et al. Soy expansion in Brazil’s Cerrado. Conserv. Lett. 12, e12671 (2019).

    Google Scholar 

  46. Anderson-Teixeira, K. J. et al. Altered dynamics of forest recovery under a changing climate. Glob. Change Biol. 19, 2001–2021 (2013).

    Google Scholar 

  47. Chua, S. C., Ramage, B. S., Ngo, K. M., Potts, M. D. & Lum, S. K. Y. Slow recovery of a secondary tropical forest in Southeast Asia. For. Ecol. Manag. 308, 153–160 (2013).

    Google Scholar 

  48. Poorter, L. et al. Multidimensional tropical forest recovery. Science 374, 1370–1376 (2021).

    CAS  Google Scholar 

  49. Tang, J., Luyssaert, S., Richardson, A. D., Kutsch, W. & Janssens, I. A. Steeper declines in forest photosynthesis than respiration explain age-driven decreases in forest growth. Proc. Natl Acad. Sci. USA 111, 8856–8860 (2014).

    CAS  Google Scholar 

  50. Winckler, J., Reick, C. H. & Pongratz, J. Robust identification of local biogeophysical effects of land-cover change in a global climate model. J. Clim. 30, 1159–1176 (2017).

    Google Scholar 

  51. Winckler, J., Lejeune, Q., Reick, C. H. & Pongratz, J. Nonlocal effects dominate the global mean surface temperature response to the biogeophysical effects of deforestation. Geophys. Res. Lett. 46, 745–755 (2019).

    Google Scholar 

  52. Pitman, A. J. et al. Importance of background climate in determining impact of land-cover change on regional climate. Nat. Clim. Change 1, 472–475 (2011).

    CAS  Google Scholar 

  53. Wan, Z. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sens. Environ. 140, 36–45 (2014).

    Google Scholar 

  54. Hansen, M. C., Townshend, J. R. G., DeFries, R. S. & Carroll, M. Estimation of tree cover using MODIS data at global, continental and regional/local scales. Int. J. Remote Sens. 26, 4359–4380 (2005).

    Google Scholar 

  55. Ciemer, C. et al. Higher resilience to climatic disturbances in tropical vegetation exposed to more variable rainfall. Nat. Geosci. 12, 174–179 (2019).

    CAS  Google Scholar 

  56. Sulla-Menashe, D., Gray, J. M., Abercrombie, S. P. & Friedl, M. A. Hierarchical mapping of annual global land cover 2001 to present: the MODIS Collection 6 land cover product. Remote Sens. Environ. 222, 183–194 (2019).

    Google Scholar 

  57. Friedl, M. A. et al. MODIS Collection 5 global land cover: algorithm refinements and characterization of new datasets. Remote Sens. Environ. 114, 168–182 (2010).

    Google Scholar 

  58. Li, W. et al. Gross and net land cover changes in the main plant functional types derived from the annual ESA CCI land cover maps (1992–2015). Earth Syst. Sci. Data 10, 219–234 (2018).

    Google Scholar 

  59. Winkler, K., Fuchs, R., Rounsevell, M. & Herold, M. Global land use changes are four times greater than previously estimated. Nat. Commun. 12, 2501 (2021).

    CAS  Google Scholar 

  60. Chen, J., Ban, Y. & Li, S. Open access to Earth land-cover map. Nature 514, 434–434 (2014).

    CAS  Google Scholar 

  61. Yan, K. et al. Evaluation of MODIS LAI/FPAR product Collection 6. Part 1: consistency and improvements. Remote Sens. 8, 359 (2016).

    CAS  Google Scholar 

  62. Yan, K. et al. Evaluation of MODIS LAI/FPAR product Collection 6. Part 2: validation and intercomparison. Remote Sens. 8, 460 (2016).

  63. Zhang, J. et al. NIRv and SIF better estimate phenology than NDVI and EVI: effects of spring and autumn phenology on ecosystem production of planted forests. Agric. For. Meteorol. 315, 108819 (2022).

    Google Scholar 

  64. Liu, H. Q. & Huete, A. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Trans. Geosci. Remote Sens. 33, 457–465 (1995).

    Google Scholar 

  65. Mu, Q., Zhao, M. & Running, S. W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 115, 1781–1800 (2011).

    Google Scholar 

  66. Zhang, Y. MATLAB Code (NGS-2023-06-01134A). figshare https://doi.org/10.6084/m9.figshare.25239877.v2 (2024).

Download references

Acknowledgements

This study was supported by the National Key R&D Program of China (grant no. 2019YFA0607302) and the National Natural Science Foundation of China (grant no. 42171096). We also acknowledge the support by the High-performance Computing Platform of Peking University.

Author information

Authors and Affiliations

Authors

Contributions

X.W. designed the research. Y.Z. performed analyses and drafted the figures. Y.Z., X.W. and X.L. wrote the manuscript with help from S.L., Y.L., C.C. and S.P. All authors contributed to the interpretation of the results.

Corresponding author

Correspondence to Xuhui Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Edouard Davin, Shruti Nath and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Tom Richardson, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text, Figs. 1–41 and Tables 1–5.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, X., Lian, X. et al. Asymmetric impacts of forest gain and loss on tropical land surface temperature. Nat. Geosci. 17, 426–432 (2024). https://doi.org/10.1038/s41561-024-01423-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-024-01423-3

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene