Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Memorability shapes perceived time (and vice versa)

Abstract

Visual stimuli are known to vary in their perceived duration. Some visual stimuli are also known to linger for longer in memory. Yet, whether these two features of visual processing are linked is unknown. Despite early assumptions that time is an extracted or higher-order feature of perception, more recent work over the past two decades has demonstrated that timing may be instantiated within sensory modality circuits. A primary location for many of these studies is the visual system, where duration-sensitive responses have been demonstrated. Furthermore, visual stimulus features have been observed to shift perceived duration. These findings suggest that visual circuits mediate or construct perceived time. Here we present evidence across a series of experiments that perceived time is affected by the image properties of scene size, clutter and memorability. More specifically, we observe that scene size and memorability dilate time, whereas clutter contracts it. Furthermore, the durations of more memorable images are also perceived more precisely. Conversely, the longer the perceived duration of an image, the more memorable it is. To explain these findings, we applied a recurrent convolutional neural network model of the ventral visual system, in which images are progressively processed over time. We find that more memorable images are processed faster, and that this increase in processing speed predicts both the lengthening and the increased precision of perceived durations. These findings provide evidence for a link between image features, time perception and memory that can be further explored with models of visual processing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Scene information shifts perceived time.
Fig. 2: Memorability dilates perceived time.
Fig. 3: Perceived duration affects memorability.
Fig. 4: Neural network modelling of memorability and time.
Fig. 5: Density scatter plot of memorability scores against the simple power curve model A parameter for all images in the LaMem dataset.

Similar content being viewed by others

Data availability

All behavioural data for these experiments, as well as the rCNN results and memorability images used, are available at https://doi.org/10.17605/OSF.IO/FX3N2 (ref. 96).

Code availability

All relevant toolboxes and code repositories are cited in the text. The code is available at https://doi.org/10.17605/OSF.IO/FX3N2 (ref. 96).

References

  1. van Wassenhove, V. Minding time in an amodal representational space. Phil. Trans. R. Soc. B 364, 1815–1830 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Yu, Q. et al. Visual cortex encodes timing information in humans and mice. Neuron 110, 4194–4211.e10 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Gibbon, J., Church, R. M. & Meck, W. H. Scalar timing in memory. Ann. N. Y. Acad. Sci. 423, 52–77 (1984).

    Article  CAS  PubMed  Google Scholar 

  4. Block, R. A. & Zakay, D. Prospective and retrospective duration judgments: a meta-analytic review. Psychon. Bull. Rev. 4, 184–197 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Matthews, W. J. & Meck, W. H. Temporal cognition: connecting subjective time to perception, attention, and memory. Psychol. Bull. 142, 865–907 (2016).

    Article  PubMed  Google Scholar 

  6. Tse, P. U., Intriligator, J., Rivest, J. & Cavanagh, P. Attention and the subjective expansion of time. Percept. Psychophys. 66, 1171–1189 (2004).

    Article  PubMed  Google Scholar 

  7. Walsh, V. A theory of magnitude: common cortical metrics of time, space and quantity. Trends Cogn. Sci. 7, 483–488 (2003).

    Article  PubMed  Google Scholar 

  8. Eagleman, D. M. & Pariyadath, V. Is subjective duration a signature of coding efficiency? Phil. Trans. R. Soc. B 364, 1841–1851 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Aaen-Stockdale, C., Hotchkiss, J., Heron, J. & Whitaker, D. Perceived time is spatial frequency dependent. Vis. Res. 51, 1232–1238 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Bruno, A. & Cicchini, G. M. Multiple channels of visual time perception. Curr. Opin. Behav. Sci. 8, 131–139 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Matthews, W. J., Stewart, N. & Wearden, J. H. Stimulus intensity and the perception of duration. J. Exp. Psychol. Hum. Percept. Perform. 37, 303–313 (2011).

    Article  PubMed  Google Scholar 

  12. Allman, M. J., Teki, S., Griffiths, T. D. & Meck, W. H. Properties of the internal clock: first- and second-order principles of subjective time. Annu. Rev. Psychol. 65, 743–771 (2014).

    Article  PubMed  Google Scholar 

  13. Wang, L. & Jiang, Y. Life motion signals lengthen perceived temporal duration. Proc. Natl Acad. Sci. USA 109, E673–E677 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lake, J. I., LaBar, K. S. & Meck, W. H. Emotional modulation of interval timing and time perception. Neurosci. Biobehav. Rev. 64, 403–420 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Varakin, D. A., Klemes, K. J. & Porter, K. A. The effect of scene structure on time perception. Q. J. Exp. Psychol. (Hove) 66, 1639–1652 (2013).

    Article  PubMed  Google Scholar 

  16. Palumbo, L., Ogden, R., Makin, A. D. & Bertamini, M. Examining visual complexity and its influence on perceived duration. J. Vis. 14, 3 (2014).

    Article  PubMed  Google Scholar 

  17. Shuler, M. G. & Bear, M. F. Reward timing in the primary visual cortex. Science 311, 1606–1609 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Namboodiri, V. M., Huertas, M. A., Monk, K. J., Shouval, H. Z. & Hussain, S. M. G. Visually cued action timing in the primary visual cortex. Neuron 86, 319–330 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bueti, D., Bahrami, B., Walsh, V. & Rees, G. Encoding of temporal probabilities in the human brain. J. Neurosci. 30, 4343–4352 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Heron, J. et al. Duration channels mediate human time perception. Proc. R. Soc. B 279, 690–698 (2012).

    Article  PubMed  Google Scholar 

  21. Noguchi, Y. & Kakigi, R. Time representations can be made from nontemporal information in the brain: an MEG study. Cereb. Cortex 16, 1797–1808 (2006).

    Article  PubMed  Google Scholar 

  22. Heron, J., Hotchkiss, J., Aaen-Stockdale, C., Roach, N. W. & Whitaker, D. A neural hierarchy for illusions of time: duration adaptation precedes multisensory integration. J. Vis. 13, 4 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Heron, J., Fulcher, C., Collins, H., Whitaker, D. & Roach, N. W. Adaptation reveals multi-stage coding of visual duration. Sci. Rep. 9, 3016 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bueti, D. & Macaluso, E. Auditory temporal expectations modulate activity in visual cortex. NeuroImage 51, 1168–1183 (2010).

    Article  PubMed  Google Scholar 

  25. Cicchini, G. M. Perception of duration in the parvocellular system. Front. Integr. Neurosci. 6, 14 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Suárez-Pinilla, M., Nikiforou, K., Fountas, Z., Seth, A. K. & Roseboom, W. Perceptual content, not physiological signals, determines perceived duration when viewing dynamic, natural scenes. Collabra Psychol. 5, 55 (2019).

  27. Cardaci, M., Tabacchi, M. E., Petrou, M. & Gesù, V. D. Attentional vs computational complexity measures in observing paintings. Spat. Vis. 22, 195–209 (2009).

    Article  PubMed  Google Scholar 

  28. Folta-Schoofs, K., Wolf, O. T., Treue, S. & Schoofs, D. Perceptual complexity, rather than valence or arousal accounts for distracter-induced overproductions of temporal durations. Acta Psychol. (Amst.) 147, 51–59 (2014).

    Article  PubMed  Google Scholar 

  29. Huertas, M. A., Hussain, S. M. G. & Shouval, H. Z. A simple network architecture accounts for diverse reward time responses in primary visual cortex. J. Neurosci. 35, 12659–12672 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Park, S., Konkle, T. & Oliva, A. Parametric coding of the size and clutter of natural scenes in the human brain. Cereb. Cortex 25, 1792–1805 (2015).

    Article  PubMed  Google Scholar 

  31. Moscatelli, A., Mezzetti, M. & Lacquaniti, F. Modeling psychophysical data at the population-level: the generalized linear mixed model. J. Vis. 12, 26 (2012).

    Article  PubMed  Google Scholar 

  32. Khosla, A., Raju, A. S., Torralba, A. & Oliva, A. Understanding and predicting image memorability at a large scale. In 2015 IEEE International Conference on Computer Vision (ICCV) 2390–2398 (IEEE, 2015).

  33. Rust, N. C. & Mehrpour, V. Understanding image memorability. Trends Cogn. Sci. 24, 557–568 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gedvila, M., Ongchoco, J. D. K. & Bainbridge, W. A. Memorable beginnings, but forgettable endings: intrinsic memorability alters our subjective experience of time. Vis. Cogn. 31, 380–389 (2023).

    Article  Google Scholar 

  35. Potter, M. C. & Levy, E. I. Recognition memory for a rapid sequence of pictures. J. Exp. Psychol. 81, 10–15 (1969).

    Article  CAS  PubMed  Google Scholar 

  36. Potter, M. C. Recognition and memory for briefly presented scenes. Front. Psychol. 3, 32 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wichmann, F. A., Sharpe, L. T. & Gegenfurtner, K. R. The contributions of color to recognition memory for natural scenes. J. Exp. Psychol. Learn. Mem. Cogn. 28, 509–520 (2002).

    Article  PubMed  Google Scholar 

  38. Jazayeri, M. & Shadlen, M. N. Temporal context calibrates interval timing. Nat. Neurosci. 13, 1020–1026 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Remington, E. D., Parks, T. V. & Jazayeri, M. Late Bayesian inference in mental transformations. Nat. Commun. 9, 4419 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  40. De Kock, R., Zhou, W., Joiner, W. M. & Wiener, M. Slowing the body slows down time perception. eLife 10, e63607 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  41. De Kock, R., Zhou, W., Datta, P., Mychal, J. W. & Wiener, M. The role of consciously timed movements in shaping and improving auditory timing. Proc. R. Soc. B 290, 20222060 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Brown, S. W. Attentional resources in timing: interference effects in concurrent temporal and nontemporal working memory tasks. Percept. Psychophys. 59, 1118–1140 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Isola, P., Jianxiong, X., Parikh, D., Torralba, A. & Oliva, A. What makes a photograph memorable? IEEE Trans. Pattern Anal. Mach. Intell. 36, 1469–1482 (2014).

    Article  PubMed  Google Scholar 

  44. Bainbridge, W. A. The resiliency of image memorability: a predictor of memory separate from attention and priming. Neuropsychologia 141, 107408 (2020).

    Article  PubMed  Google Scholar 

  45. Wakeland-Hart, C. D., Cao, S. A., deBettencourt, M. T., Bainbridge, W. A. & Rosenberg, M. D. Predicting visual memory across images and within individuals. Cognition 227, 105201 (2022).

    Article  PubMed  Google Scholar 

  46. Schrimpf, M. et al. Integrative benchmarking to advance neurally mechanistic models of human intelligence. Neuron 108, 413–423 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. Saxe, A., Nelli, S. & Summerfield, C. If deep learning is the answer, what is the question? Nat. Rev. Neurosci. 22, 55–67 (2020).

    Article  PubMed  Google Scholar 

  48. Praveen, A. et al. ResMem-Net: memory based deep CNN for image memorability estimation. PeerJ Comput. Sci. 7, e767 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  49. van Bergen, R. S. & Kriegeskorte, N. Going in circles is the way forward: the role of recurrence in visual inference. Curr. Opin. Neurobiol. 65, 176–193 (2020).

    Article  PubMed  Google Scholar 

  50. Spoerer, C. J., Kietzmann, T. C., Mehrer, J., Charest, I. & Kriegeskorte, N. Recurrent neural networks can explain flexible trading of speed and accuracy in biological vision. PLoS Comput. Biol. 16, e1008215 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Karapetian, A. et al. Empirically identifying and computationally modeling the brain–behavior relationship for human scene categorization. J. Cogn. Neurosci. 35, 1879–1897 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sörensen, L. K. A., Bohté, S. M., de, J. D., Slagter, H. A. & Scholte, H. S. Mechanisms of human dynamic object recognition revealed by sequential deep neural networks. PLoS Comput. Biol. 19, e1011169 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bueti, D. & Walsh, V. The parietal cortex and the representation of time, space, number and other magnitudes. Phil. Trans. R. Soc. B 364, 1831–1840 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Manassi, M. & Whitney, D. Multi-level crowding and the paradox of object recognition in clutter. Curr. Biol. 28, R127–R133 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Martin, C. R., Khosla, A., Pantazis, D. & Oliva, A. Dynamics of scene representations in the human brain revealed by magnetoencephalography and deep neural networks. NeuroImage 153, 346–358 (2017).

    Article  Google Scholar 

  56. Graumann, M., Ciuffi, C., Dwivedi, K., Roig, G. & Cichy, R. M. The spatiotemporal neural dynamics of object location representations in the human brain. Nat. Hum. Behav. 6, 796–811 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Vishne, G., Gerber, E. M., Knight, R. T. & Deouell, L. Y. Distinct ventral stream and prefrontal cortex representational dynamics during sustained conscious visual perception. Cell Rep. 42, 112752 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Learmonth, A. E., Nadel, L. & Newcombe, N. S. Children’s use of landmarks: implications for modularity theory. Psychol. Sci. 13, 337–341 (2002).

    Article  PubMed  Google Scholar 

  59. Bonner, M. F. & Epstein, R. A. Coding of navigational affordances in the human visual system. Proc. Natl Acad. Sci. USA 114, 4793–4798 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Josephs, E. L. & Konkle, T. Large-scale dissociations between views of objects, scenes, and reachable-scale environments in visual cortex. Proc. Natl Acad. Sci. USA 117, 29354–29362 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Riemer, M., Shine, J. P. & Wolbers, T. On the (a)symmetry between the perception of time and space in large-scale environments. Hippocampus 28, 539–548 (2018).

    Article  PubMed  Google Scholar 

  62. Davis, T. M. & Bainbridge, W. A. Memory for artwork is predictable. Proc. Natl Acad. Sci. USA 120, e2302389120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dubey, R., Peterson, J., Khosla, A., Yang, M.-H. & Ghanem, B. What makes an object memorable? In 2015 IEEE International Conference on Computer Vision (ICCV) 1089–1097 (IEEE, 2015).

  64. Jaegle, A. et al. Population response magnitude variation in inferotemporal cortex predicts image memorability. eLife 8, e47596 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Masarwa, S., Kreichman, O. & Gilaie-Dotan, S. Larger images are better remembered during naturalistic encoding. Proc. Natl Acad. Sci. USA 119, e2119614119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jeong, S. K. Perceived image size modulates visual memory. Psychon. Bull. Rev. 30, 2282–2288 (2023).

    Article  PubMed  Google Scholar 

  67. Pooresmaeili, A., Arrighi, R., Biagi, L. & Morrone, M. C. Blood oxygen level-dependent activation of the primary visual cortex predicts size adaptation illusion. J. Neurosci. 33, 15999–16008 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rust, N. C. & Cohen, M. R. Priority coding in the visual system. Nat. Rev. Neurosci. 23, 376–388 (2022).

    Article  CAS  PubMed  Google Scholar 

  69. Rust, N. C. & Palmer, S. E. Remembering the past to see the future. Annu. Rev. Vis. Sci. 7, 349–365 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  70. White, P. A. The three-second subjective present: a critical review and a new proposal. Psychol. Bull. 143, 735–756 (2017).

    Article  PubMed  Google Scholar 

  71. Pereira, M., Perrin, D. & Faivre, N. A leaky evidence accumulation process for perceptual experience. Trends Cogn. Sci. 26, 451–461 (2022).

    Article  PubMed  Google Scholar 

  72. Ossmy, O. et al. The timescale of perceptual evidence integration can be adapted to the environment. Curr. Biol. 23, 981–986 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. de Jong, J., van Rijn, H. & Akyürek, E. G. Adaptive encoding speed in working memory. Psychol. Sci. 34, 822–833 (2023).

    Article  PubMed  Google Scholar 

  74. Kietzmann, T. C. et al. Recurrence is required to capture the representational dynamics of the human visual system. Proc. Natl Acad. Sci. USA 116, 21854–21863 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lamme, V. A. & Roelfsema, P. R. The distinct modes of vision offered by feedforward and recurrent processing. Trends Neurosci. 23, 571–579 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Goudar, V. & Buonomano, D. V. Encoding sensory and motor patterns as time-invariant trajectories in recurrent neural networks. eLife 7, e31134 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Bi, Z. & Zhou, C. Understanding the computation of time using neural network models. Proc. Natl Acad. Sci. USA 117, 10530–10540 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang, J., Narain, D., Hosseini, E. A. & Jazayeri, M. Flexible timing by temporal scaling of cortical responses. Nat. Neurosci. 21, 102–110 (2018).

    Article  CAS  PubMed  Google Scholar 

  79. Bainbridge, W. A., Isola, P. & Oliva, A. The intrinsic memorability of face photographs. J. Exp. Psychol. Gen. 142, 1323–1334 (2013).

    Article  PubMed  Google Scholar 

  80. Koch, G. E., Akpan, E. & Coutanche, M. N. Image memorability is predicted by discriminability and similarity in different stages of a convolutional neural network. Learn. Mem. 27, 503–509 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Han, S., Rezanejad, M. & Walther, D. B. Memorability of line drawings of scenes: the role of contour properties. Mem. Cogn. https://doi.org/10.3758/s13421-023-01478-4 (2023).

  82. Gillies, G. et al. Tracing the emergence of the memorability benefit. Cognition 238, 105489 (2023).

    Article  PubMed  Google Scholar 

  83. Kramer, M. A., Hebart, M. N., Baker, C. I. & Bainbridge, W. A. The features underlying the memorability of objects. Sci. Adv. 9, eadd2981 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Conwell, C., Prince, J. S., Kay, K. N., Alvarez, G. A. & Konkle, T. What can 1.8 billion regressions tell us about the pressures shaping high-level visual representation in brains and machines? Preprint at bioRxiv https://doi.org/10.1101/2022.03.28.485868 (2022).

  85. Goetschalckx, L. & Wagemans, J. MemCat: a new category-based image set quantified on memorability. PeerJ 7, e8169 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Willenbockel, V. et al. Controlling low-level image properties: the SHINE toolbox. Behav. Res. Methods 42, 671–684 (2010).

    Article  PubMed  Google Scholar 

  87. Kopec, C. D. & Brody, C. D. Human performance on the temporal bisection task. Brain Cogn. 74, 262–272 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Treutwein, B. Adaptive psychophysical procedures. Vis. Res. 35, 2503–2522 (1995).

    Article  CAS  PubMed  Google Scholar 

  89. Wichmann, F. A. & Hill, N. J. The psychometric function: I. Fitting, sampling, and goodness of fit. Percept. Psychophys. 63, 1293–1313 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Schütt, H. H., Harmeling, S., Macke, J. H. & Wichmann, F. A. Painfree and accurate Bayesian estimation of psychometric functions for (potentially) overdispersed data. Vis. Res. 122, 105–123 (2016).

    Article  PubMed  Google Scholar 

  91. Lapid, E., Ulrich, R. & Rammsayer, T. On estimating the difference limen in duration discrimination tasks: a comparison of the 2AFC and the reminder task. Percept. Psychophys. 70, 291–305 (2008).

    Article  PubMed  Google Scholar 

  92. Mioni, G., Stablum, F., McClintock, S. M. & Grondin, S. Different methods for reproducing time, different results. Atten. Percept. Psychophys. 76, 675–681 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  93. O’brien, R. M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 41, 673–690 (2007).

    Article  Google Scholar 

  94. Doerig, A. et al. The neuroconnectionist research programme. Nat. Rev. Neurosci. 24, 431–450 (2023).

    Article  CAS  PubMed  Google Scholar 

  95. Mehrer, J., Spoerer, C. J., Jones, E. C., Kriegeskorte, N. & Kietzmann, T. C. An ecologically motivated image dataset for deep learning yields better models of human vision. Proc. Natl Acad. Sci. USA 118, e2011417118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wiener, M. Data and code for ‘Memorability shapes perceived time (and vice versa)’. OSF https://doi.org/10.17605/OSF.IO/FX3N2 (2024).

Download references

Acknowledgements

We thank A. Oliva, J. Ongchoco, T. Konkle and T. Kietzmann for their helpful comments relating to the stimuli, results and findings in this manuscript. The authors received no specific funding for this work.

Author information

Authors and Affiliations

Authors

Contributions

M.W., A.D.C. and A.C.M. conceived of and designed the experiments. A.D.C. and A.C.M. collected and analysed the data, with consultation and additional analyses by M.W. A.C.M. and M.W. wrote the manuscript.

Corresponding author

Correspondence to Martin Wiener.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks Luca Ronconi, Vishwa Goudar and Changsong Zhou for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, A.C., Cameron, A.D. & Wiener, M. Memorability shapes perceived time (and vice versa). Nat Hum Behav (2024). https://doi.org/10.1038/s41562-024-01863-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41562-024-01863-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing