Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mendelian randomization analyses reveal causal relationships between brain functional networks and risk of psychiatric disorders

Abstract

Dysfunction of brain resting-state functional networks has been widely reported in psychiatric disorders. However, the causal relationships between brain resting-state functional networks and psychiatric disorders remain largely unclear. Here we perform bidirectional two-sample Mendelian randomization (MR) analyses to investigate the causalities between 191 resting-state functional magnetic resonance imaging (rsfMRI) phenotypes (n = 34,691 individuals) and 12 psychiatric disorders (n = 14,307 to 698,672 individuals). Forward MR identified 8 rsfMRI phenotypes causally associated with the risk of psychiatric disorders. For example, the increase in the connectivity of motor, subcortical-cerebellum and limbic network was associated with lower risk of autism spectrum disorder. In adddition, increased connectivity in the default mode and central executive network was associated with lower risk of post-traumatic stress disorder and depression. Reverse MR analysis revealed significant associations between 4 psychiatric disorders and 6 rsfMRI phenotypes. For instance, the risk of attention-deficit/hyperactivity disorder increases the connectivity of the attention, salience, motor and subcortical-cerebellum network. The risk of schizophrenia mainly increases the connectivity of the default mode and central executive network and decreases the connectivity of the attention network. In summary, our findings reveal causal relationships between brain functional networks and psychiatric disorders, providing important interventional and therapeutic targets for psychiatric disorders at the brain functional network level.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Workflow of bidirectional MR analysis between brain rsfMRI and psychiatric disorders.
Fig. 2: Causalities in the forward MR.
Fig. 3: Causalities in the reverse MR.

Similar content being viewed by others

Data availability

All GWAS summary statistical data in this study are publicly available. The GWAS dataset for birth length was downloaded from the Early Growth Genetics Consortium (http://egg-consortium.org), and the GWAS summary statistics for height was downloaded from the GIANT 2014 cohort (http://www.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium). The GWAS summary statistics for anxiety disorder, post-traumatic stress disorder and alcohol use disorder from MVP were obtained via dbGAP (dbGaP accession: phs001672.v9.p1). The GWAS summary statistics for insomnia was obtained from FinnGen R9 release (https://storage.googleapis.com/finngen-public-data-r9/summary_stats/finngen_R9_F5_INSOMNIA.gz), the GWAS summary statistics for Alzheimer’s disease was obtained from Center for Neurogenomics and Cognitive Research (https://ctg.cncr.nl/software/summary_statistics/), and GWAS datasets for other psychiatric disorders were obtained from PGC (https://pgc.unc.edu/for-researchers/download-results). The datasets for the brain rsfMRI can be obtained via Zenodo at https://zenodo.org/record/5775047 (ref. 119). Source data are provided with this paper.

Code availability

The custom codes used in the study are available on GitHub at https://github.com/Dangxl/fMRI-MR-analysis. All software packages used are publicly available.

References

  1. Charlson, F. et al. New WHO prevalence estimates of mental disorders in conflict settings: a systematic review and meta-analysis. Lancet 394, 240–248 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  2. GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1789–1858 (2018).

    Article  Google Scholar 

  3. Vigo, D., Thornicroft, G. & Atun, R. Estimating the true global burden of mental illness. Lancet Psychiatry 3, 171–178 (2016).

    Article  PubMed  Google Scholar 

  4. Schmaal, L. et al. Subcortical brain alterations in major depressive disorder: findings from the ENIGMA Major Depressive Disorder working group. Mol. Psychiatry 21, 806–812 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Wang, K. et al. Brain structural abnormalities in adult major depressive disorder revealed by voxel- and source-based morphometry: evidence from the REST-meta-MDD Consortium. Psychol. Med. 53, 3672–3682 (2023).

    Article  PubMed  Google Scholar 

  6. Han, L. K. M. et al. Brain aging in major depressive disorder: results from the ENIGMA major depressive disorder working group. Mol. Psychiatry 26, 5124–5139 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. van Erp, T. G. M. et al. Cortical brain abnormalities in 4474 individuals with schizophrenia and 5098 control subjects via the Enhancing Neuro Imaging Genetics Through Meta Analysis (ENIGMA) Consortium. Biol. Psychiatry 84, 644–654 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cahn, W. et al. Brain volume changes in first-episode schizophrenia: a 1-year follow-up study. Arch. Gen. Psychiatry 59, 1002–1010 (2002).

    Article  PubMed  Google Scholar 

  9. Guo, J. et al. Mendelian randomization analyses support causal relationships between brain imaging-derived phenotypes and risk of psychiatric disorders. Nat. Neurosci. 25, 1519–1527 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Arthurs, O. J. & Boniface, S. How well do we understand the neural origins of the fMRI BOLD signal? Trends Neurosci. 25, 27–31 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Finn, E. S. et al. Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity. Nat. Neurosci. 18, 1664–1671 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yeo, B. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

    Article  PubMed  Google Scholar 

  13. Menon, V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn. Sci. 15, 483–506 (2011).

    Article  PubMed  Google Scholar 

  14. Anticevic, A. et al. Association of thalamic dysconnectivity and conversion to psychosis in youth and young adults at elevated clinical risk. JAMA Psychiatry 72, 882–891 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Horga, G. et al. Dopamine-related disruption of functional topography of striatal connections in unmedicated patients with schizophrenia. JAMA Psychiatry 73, 862–870 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chopra, S. et al. Functional connectivity in antipsychotic-treated and antipsychotic-naive patients with first-episode psychosis and low risk of self-harm or aggression: a secondary analysis of a randomized clinical trial. JAMA Psychiatry 78, 994–1004 (2021).

    Article  PubMed  Google Scholar 

  17. Yan, C.-G. et al. Reduced default mode network functional connectivity in patients with recurrent major depressive disorder. Proc. Natl Acad. Sci. USA 116, 9078–9083 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cullen, K. R. et al. Abnormal amygdala resting-state functional connectivity in adolescent depression. JAMA Psychiatry 71, 1138–1147 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kaiser, R. H., Andrews-Hanna, J. R., Wager, T. D. & Pizzagalli, D. A. Large-scale network dysfunction in major depressive disorder: a meta-analysis of resting-state functional connectivity. JAMA Psychiatry 72, 603–611 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Li, F. et al. Intrinsic brain abnormalities in attention deficit hyperactivity disorder: a resting-state functional MR imaging study. Radiology 272, 514–523 (2014).

    Article  PubMed  Google Scholar 

  21. Badhwar, A. et al. Resting-state network dysfunction in Alzheimer’s disease: a systematic review and meta-analysis. Alzheimers Dement. 8, 73–85 (2017).

    Google Scholar 

  22. Ben Simon, E., Rossi, A., Harvey, A. G. & Walker, M. P. Overanxious and underslept. Nat. Hum. Behav. 4, 100–110 (2020).

    Article  PubMed  Google Scholar 

  23. Bishop, S., Duncan, J., Brett, M. & Lawrence, A. D. Prefrontal cortical function and anxiety: controlling attention to threat-related stimuli. Nat. Neurosci. 7, 184–188 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Kim, M. J., Gee, D. G., Loucks, R. A., Davis, F. C. & Whalen, P. J. Anxiety dissociates dorsal and ventral medial prefrontal cortex functional connectivity with the amygdala at rest. Cereb. Cortex 21, 1667–1673 (2011).

    Article  PubMed  Google Scholar 

  25. Sato, W. & Uono, S. The atypical social brain network in autism: advances in structural and functional MRI studies. Curr. Opin. Neurol. 32, 617–621 (2019).

    Article  PubMed  Google Scholar 

  26. Zhu, H. et al. Increased functional segregation of brain network associated with symptomatology and sustained attention in chronic post-traumatic stress disorder. J. Affect. Disord. 247, 183–191 (2019).

    Article  PubMed  Google Scholar 

  27. Emdin, C. A., Khera, A. V. & Kathiresan, S. Mendelian randomization. JAMA 318, 1925–1926 (2017).

    Article  PubMed  Google Scholar 

  28. Burgess, S., Foley, C. N., Allara, E., Staley, J. R. & Howson, J. M. M. A robust and efficient method for Mendelian randomization with hundreds of genetic variants. Nat. Commun. 11, 376 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sanderson, E. et al. Mendelian randomization. Nat. Rev. Methods Primers 2, 6 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhao, B. et al. Common variants contribute to intrinsic human brain functional networks. Nat. Genet. 54, 508–517 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Elliott, L. T. et al. Genome-wide association studies of brain imaging phenotypes in UK Biobank. Nature 562, 210–216 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Grasby, K. L. et al. The genetic architecture of the human cerebral cortex. Science 367, eaay6690 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhao, B. et al. Genome-wide association analysis of 19,629 individuals identifies variants influencing regional brain volumes and refines their genetic co-architecture with cognitive and mental health traits. Nat. Genet. 51, 1637–1644 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wood, A. R. et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat. Genet. 46, 1173–1186 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. van der Valk, R. J. et al. A novel common variant in DCST2 is associated with length in early life and height in adulthood. Hum. Mol. Genet. 24, 1155–1168 (2015).

    Article  PubMed  Google Scholar 

  36. Lord, C., Elsabbagh, M., Baird, G. & Veenstra-Vanderweele, J. Autism spectrum disorder. Lancet 392, 508–520 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Clark, S. V., Semmel, E. S., Aleksonis, H. A., Steinberg, S. N. & King, T. Z. Cerebellar-subcortical-cortical systems as modulators of cognitive functions. Neuropsychol. Rev. 31, 422–446 (2021).

    Article  PubMed  Google Scholar 

  38. Arthurs, O. J., Williams, E. J., Carpenter, T. A., Pickard, J. D. & Boniface, S. J. Linear coupling between functional magnetic resonance imaging and evoked potential amplitude in human somatosensory cortex. Neuroscience 101, 803–806 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Kleinhans, N. M. et al. Abnormal functional connectivity in autism spectrum disorders during face processing. Brain 131, 1000–1012 (2008).

    Article  PubMed  Google Scholar 

  40. Jauhar, S., Johnstone, M. & McKenna, P. J. Schizophrenia. Lancet 399, 473–486 (2022).

    Article  CAS  PubMed  Google Scholar 

  41. Legge, S. E. et al. Genetic architecture of schizophrenia: a review of major advancements. Psychol. Med. 51, 2168–2177 (2021).

    Article  PubMed  Google Scholar 

  42. Menon, V. The triple network model, insight, and large-scale brain organization in autism. Biol. Psychiatry 84, 236–238 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Maercker, A. et al. Complex post-traumatic stress disorder. Lancet 400, 60–72 (2022).

    Article  PubMed  Google Scholar 

  44. Kupfer, D. J., Frank, E. & Phillips, M. L. Major depressive disorder: new clinical, neurobiological, and treatment perspectives. Lancet 379, 1045–1055 (2012).

    Article  PubMed  Google Scholar 

  45. Robertson, M. M. et al. Gilles de la Tourette syndrome. Nat. Rev. Dis. Primers 3, 16097 (2017).

    Article  PubMed  Google Scholar 

  46. Morin, C. M. et al. Insomnia disorder. Nat. Rev. Dis. Primers 1, 15026 (2015).

    Article  PubMed  Google Scholar 

  47. Abbott, A. E. et al. Patterns of atypical functional connectivity and behavioral links in autism differ between default, salience, and executive networks. Cereb. Cortex 26, 4034–4045 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Li, X. et al. Structural, functional, and molecular imaging of autism spectrum disorder. Neurosci. Bull. 37, 1051–1071 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Bolognini, N., Rossetti, A., Fusaro, M., Vallar, G. & Miniussi, C. Sharing social touch in the primary somatosensory cortex. Curr. Biol. 24, 1513–1517 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Blakemore, S. J., Bristow, D., Bird, G., Frith, C. & Ward, J. Somatosensory activations during the observation of touch and a case of vision–touch synaesthesia. Brain 128, 1571–1583 (2005).

    Article  PubMed  Google Scholar 

  51. Zielinski, B. A. et al. Longitudinal changes in cortical thickness in autism and typical development. Brain 137, 1799–1812 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Huang, Y. et al. Potential locations for noninvasive brain stimulation in treating autism spectrum disorders—a functional connectivity study. Front. Psychiatry 11, 388 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Limperopoulos, C. Extreme prematurity, cerebellar injury, and autism. Semin. Pediatr. Neurol. 17, 25–29 (2010).

    Article  PubMed  Google Scholar 

  54. Badura, A. et al. Normal cognitive and social development require posterior cerebellar activity. Elife 7, e36401 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wang, S. S., Kloth, A. D. & Badura, A. The cerebellum, sensitive periods, and autism. Neuron 83, 518–532 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fetit, R., Hillary, R. F., Price, D. J. & Lawrie, S. M. The neuropathology of autism: a systematic review of post-mortem studies of autism and related disorders. Neurosci. Biobehav. Rev. 129, 35–62 (2021).

    Article  PubMed  Google Scholar 

  57. Liloia, D. et al. Atypical local brain connectivity in pediatric autism spectrum disorder? A coordinate-based meta-analysis of regional homogeneity studies. Eur. Arch. Psychiatry Clin. Neurosci. 274, 3–18 (2024).

  58. Fu, Z. et al. Transient increased thalamic-sensory connectivity and decreased whole-brain dynamism in autism. Neuroimage 190, 191–204 (2019).

    Article  PubMed  Google Scholar 

  59. Ramos, T. C., Balardin, J. B., Sato, J. R. & Fujita, A. Abnormal cortico-cerebellar functional connectivity in autism spectrum disorder. Front. Syst. Neurosci. 12, 74 (2018).

    Article  PubMed  Google Scholar 

  60. Okada, N. J. et al. Atypical cerebellar functional connectivity at 9 months of age predicts delayed socio-communicative profiles in infants at high and low risk for autism. J. Child Psychol. Psychiatry 63, 1002–1016 (2022).

    Article  PubMed  Google Scholar 

  61. Uddin, L. Q. et al. Salience network-based classification and prediction of symptom severity in children with autism. JAMA Psychiatry 70, 869–879 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Smallwood, J. et al. The default mode network in cognition: a topographical perspective. Nat. Rev. Neurosci. 22, 503–513 (2021).

    Article  CAS  PubMed  Google Scholar 

  63. Cattarinussi, G., Di Giorgio, A., Moretti, F., Bondi, E. & Sambataro, F. Dynamic functional connectivity in schizophrenia and bipolar disorder: a review of the evidence and associations with psychopathological features. Prog. Neuropsychopharmacol. Biol. Psychiatry 127, 110827 (2023).

    Article  PubMed  Google Scholar 

  64. Gao, W. J., Yang, S. S., Mack, N. R. & Chamberlin, L. A. Aberrant maturation and connectivity of prefrontal cortex in schizophrenia-contribution of NMDA receptor development and hypofunction. Mol. Psychiatry 27, 731–743 (2022).

    Article  CAS  PubMed  Google Scholar 

  65. Konu, D. et al. A role for the ventromedial prefrontal cortex in self-generated episodic social cognition. Neuroimage 218, 116977 (2020).

    Article  PubMed  Google Scholar 

  66. Ralph, M. A., Jefferies, E., Patterson, K. & Rogers, T. T. The neural and computational bases of semantic cognition. Nat. Rev. Neurosci. 18, 42–55 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Mwansisya, T. E. et al. Task and resting-state fMRI studies in first-episode schizophrenia: a systematic review. Schizophr. Res. 189, 9–18 (2017).

    Article  PubMed  Google Scholar 

  68. Skatun, K. C. et al. Global brain connectivity alterations in patients with schizophrenia and bipolar spectrum disorders. J. Psychiatry Neurosci. 41, 331–341 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Sheffield, J. M. & Barch, D. M. Cognition and resting-state functional connectivity in schizophrenia. Neurosci. Biobehav. Rev. 61, 108–120 (2016).

    Article  PubMed  Google Scholar 

  70. Aquino, K. M., Fulcher, B. D., Parkes, L., Sabaroedin, K. & Fornito, A. Identifying and removing widespread signal deflections from fMRI data: rethinking the global signal regression problem. Neuroimage 212, 116614 (2020).

    Article  PubMed  Google Scholar 

  71. Scholvinck, M. L., Maier, A., Ye, F. Q., Duyn, J. H. & Leopold, D. A. Neural basis of global resting-state fMRI activity. Proc. Natl Acad. Sci. USA 107, 10238–10243 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. De Bellis, M. D. et al. Superior temporal gyrus volumes in maltreated children and adolescents with PTSD. Biol. Psychiatry 51, 544–552 (2002).

    Article  PubMed  Google Scholar 

  73. Zotev, V., Phillips, R., Young, K. D., Drevets, W. C. & Bodurka, J. Prefrontal control of the amygdala during real-time fMRI neurofeedback training of emotion regulation. PLoS ONE 8, e79184 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zotev, V. et al. Self-regulation of amygdala activation using real-time FMRI neurofeedback. PLoS ONE 6, e24522 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang, X. et al. Preliminary study of acute changes in emotion processing in trauma survivors with PTSD symptoms. PLoS ONE 11, e0159065 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Soncin, L. D. et al. Correlation between fluorodeoxyglucose positron emission tomography brain hypometabolism and posttraumatic stress disorder symptoms in temporal lobe epilepsy. Epilepsia 63, e74–e79 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gosnell, S. N. et al. Right temporal pole volume reduction in PTSD. Prog. Neuropsychopharmacol. Biol. Psychiatry 100, 109890 (2020).

    Article  PubMed  Google Scholar 

  78. Daniels, J. K. et al. Switching between executive and default mode networks in posttraumatic stress disorder: alterations in functional connectivity. J. Psychiatry Neurosci. 35, 258–266 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Du, M. Y. et al. Altered functional connectivity in the brain default-mode network of earthquake survivors persists after 2 years despite recovery from anxiety symptoms. Soc. Cogn. Affect. Neurosci. 10, 1497–1505 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Zhu, Y., Zhao, X., Yin, H. & Zhang, M. Functional connectivity density abnormalities and anxiety in primary insomnia patients. Brain Imaging Behav. 15, 114–121 (2020).

    Article  Google Scholar 

  81. Laidi, C. et al. Cerebellar atypicalities in autism? Biol. Psychiatry 92, 674–682 (2022).

    Article  PubMed  Google Scholar 

  82. Forstner, A. J. et al. Genome-wide association study of panic disorder reveals genetic overlap with neuroticism and depression. Mol. Psychiatry 26, 4179–4190 (2021).

    Article  PubMed  Google Scholar 

  83. International Obsessive Compulsive Disorder Foundation Genetics Collaborative (IOCDF-GC) and OCD Collaborative Genetics Association Studies (OCGAS). Revealing the complex genetic architecture of obsessive-compulsive disorder using meta-analysis. Mol. Psychiatry 23, 1181–1188 (2018).

  84. Wightman, D. P. et al. A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer’s disease. Nat. Genet. 53, 1276–1282 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Demontis, D. et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat. Genet. 51, 63–75 (2019).

    Article  CAS  PubMed  Google Scholar 

  86. Levey, D. F. et al. Reproducible genetic risk loci for anxiety: results from approximately 200,000 participants in the Million Veteran Program. Am. J. Psychiatry 177, 223–232 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Grove, J. et al. Identification of common genetic risk variants for autism spectrum disorder. Nat. Genet. 51, 431–444 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mullins, N. et al. Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nat. Genet. 53, 817–829 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kurki, M. I. et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 613, 508–518 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Stein, M. B. et al. Genome-wide association analyses of post-traumatic stress disorder and its symptom subdomains in the Million Veteran Program. Nat. Genet. 53, 174–184 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Trubetskoy, V. et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature 604, 502–508 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Yu, D. et al. Interrogating the genetic determinants of Tourette’s Syndrome and other tic disorders through genome-wide association studies. Am. J. Psychiatry 176, 217–227 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Zhou, H. et al. Genome-wide meta-analysis of problematic alcohol use in 435,563 individuals yields insights into biology and relationships with other traits. Nat. Neurosci. 23, 809–818 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Johnson, E. C. et al. A large-scale genome-wide association study meta-analysis of cannabis use disorder. Lancet Psychiatry 7, 1032–1045 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Wray, N. R. et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat. Genet. 50, 668–681 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Levey, D. F. et al. Bi-ancestral depression GWAS in the Million Veteran Program and meta-analysis in >1.2 million individuals highlight new therapeutic directions. Nat. Neurosci. 24, 954–963 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zheng, J. et al. Recent developments in Mendelian randomization studies. Curr. Epidemiol. Rep. 4, 330–345 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Hemani, G. et al. The MR-Base platform supports systematic causal inference across the human phenome. Elife 7, e34408 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Chrzastek, Z. et al. Association of lower nutritional status and education level with the severity of depression symptoms in older adults—a cross sectional survey. Nutrients 13, 515 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Gurillo, P., Jauhar, S., Murray, R. M. & MacCabe, J. H. Does tobacco use cause psychosis? Systematic review and meta-analysis. Lancet Psychiatry 2, 718–725 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Kim, H. et al. Associations between smoking, alcohol consumption, physical activity and depression in middle-aged premenopausal and postmenopausal women. Front. Psychiatry 12, 761761 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Weinberg, D., Stevens, G., Duinhof, E. L. & Finkenauer, C. Adolescent socioeconomic status and mental health inequalities in the Netherlands, 2001–2017. Int. J. Environ. Res. Public Health 16, 3605 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Amalric, M. & Dehaene, S. Origins of the brain networks for advanced mathematics in expert mathematicians. Proc. Natl Acad. Sci. USA 113, 4909–4917 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Amalric, M., Roveyaz, P. & Dehaene, S. Evaluating the impact of short educational videos on the cortical networks for mathematics. Proc. Natl Acad. Sci. USA 120, e2213430120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Gao, X. et al. Explore the effects of overweight and smoking on spontaneous brain activity: independent and reverse. Front. Neurosci. 16, 944768 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Perez-Ramirez, U. et al. Brain network allostasis after chronic alcohol drinking is characterized by functional dedifferentiation and narrowing. J. Neurosci. 42, 4401–4413 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sripada, C. et al. Socioeconomic resources are associated with distributed alterations of the brain’s intrinsic functional architecture in youth. Dev. Cogn. Neurosci. 58, 101164 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Kamat, M. A. et al. PhenoScanner V2: an expanded tool for searching human genotype–phenotype associations. Bioinformatics 35, 4851–4853 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Bowden, J. et al. Improving the visualization, interpretation and analysis of two-sample summary data Mendelian randomization via the Radial plot and Radial regression. Int. J. Epidemiol. 47, 1264–1278 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Burgess, S., Thompson, S. G. & CRP CHD Genetics Collaboration. Avoiding bias from weak instruments in Mendelian randomization studies. Int. J. Epidemiol. 40, 755–764 (2011).

  111. Burgess, S., Butterworth, A. & Thompson, S. G. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet. Epidemiol. 37, 658–665 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Burgess, S. et al. Guidelines for performing Mendelian randomization investigations. Wellcome Open Res. 4, 186 (2019).

    Article  PubMed  Google Scholar 

  113. Bowden, J., Davey Smith, G. & Burgess, S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 44, 512–525 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Burgess, S. & Thompson, S. G. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur. J. Epidemiol. 32, 377–389 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Bowden, J., Davey Smith, G., Haycock, P. C. & Burgess, S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet. Epidemiol. 40, 304–314 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Hartwig, F. P., Davey Smith, G. & Bowden, J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int. J. Epidemiol. 46, 1985–1998 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Zhao, Q., Wang, J., Hemani, G., Bowden, J. & Small, D. S. Statistical inference in two-sample summary-data Mendelian randomization using robust adjusted profile score. Ann. Stat. 48, 1742–1796 (2020).

    Article  Google Scholar 

  118. Verbanck, M., Chen, C. Y., Neale, B. & Do, R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet. 50, 693–698 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhao, B. GWAS summary statistics for 191 resting-state functional MRI (rs-fMRI) traits. Zenodo https://doi.org/10.5281/zenodo.5775047 (2021).

Download references

Acknowledgements

This study was equally supported by the National Nature Science Foundation of China (U2102205), start-up funds from Southeast University (RF1028623032), and the Key Project of Yunnan Fundamental Research Projects (202101AS070055), and was also supported by the Distinguished Young Scientists grant of Yunnan Province (202001AV070006). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. We thank Z. Ding and Q. Li for technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

X.-J.L. conceived, designed and supervised the whole study. C.M. and X.D. conducted the analyses and drafted the manuscript. X.-J.L. oversaw the project, revised and finalized the manuscript. All authors revised the manuscript critically and approved the final version.

Corresponding author

Correspondence to Xiong-Jian Luo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, C., Dang, X. & Luo, XJ. Mendelian randomization analyses reveal causal relationships between brain functional networks and risk of psychiatric disorders. Nat Hum Behav (2024). https://doi.org/10.1038/s41562-024-01879-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41562-024-01879-8

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research