Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Self-hybridization within non-Hermitian localized plasmonic systems

Abstract

The orthogonal eigenmodes are well-defined solutions of Hermitian equations describing many physical situations from quantum mechanics to acoustics. However, a large variety of non-Hermitian problems, including gravitational waves close to black holes or leaky electromagnetic cavities, require the use of a bi-orthogonal eigenbasis with consequences challenging our physical understanding1,2,3,4. The need to compensate for energy losses made the few successful attempts5,6,7,8 to experimentally probe non-Hermiticity extremely complicated. We overcome this problem by considering localized plasmonic systems. As the non-Hermiticity in these systems does not stem from temporal invariance breaking but from spatial symmetry breaking, its consequences can be observed more easily. We report on the theoretical and experimental evidence for non-Hermiticity-induced strong coupling between surface plasmon modes of different orders within silver nanodaggers. The symmetry conditions for triggering this counter-intuitive self-hybridization phenomenon are provided. Similar observable effects are expected to exist in any system exhibiting bi-orthogonal eigenmodes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Symmetry-driven bi-orthogonality in LSP systems.
Fig. 2: Self-hybridization principle.
Fig. 3: Experimental observation of self-hybridization in nanodaggers.

Similar content being viewed by others

References

  1. Bender, C. M., Brody, D. C. & Jones, H. F. Complex extension of quantum mechanics. Phys. Rev. Lett. 89, L391–L394 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  2. Heiss, W. D. The physics of exceptional points. J. Phys. A 45, 444016 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Brody, D. C. Biorthogonal quantum mechanics. J. Phys. A 47, 035305 (2014).

    Article  MathSciNet  Google Scholar 

  4. Lee, S. Y. Decaying and growing eigenmodes in open quantum systems: biorthogonality and the Petermann factor. Phys. Rev. A 80, 1–9 (2009).

    Google Scholar 

  5. Stehmann, T., Heiss, W. D. & Scholtz, F. G. Observation of exceptional points in electronic circuits. J. Phys. A. 37, 7813–7819 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Lee, S.-Y. et al. Divergent Petermann factor of interacting resonances in a stadium-shaped microcavity. Phys. Rev. A 78, 015805 (2008).

    Google Scholar 

  7. Doppler, J. et al. Dynamically encircling an exceptional point for asymmetric mode switching. Nature 537, 76–79 (2016).

    Google Scholar 

  8. Shin, Y. et al. Observation of an exceptional point in a two-dimensional ultrasonic cavity of concentric circular shells. Sci. Rep. 6, 38826 (2016).

    Article  ADS  Google Scholar 

  9. Leung, P. T., Liu, S. Y. & Young, K. Completeness and orthogonality of quasinormal modes in leaky optical cavities. Phys. Rev. A. 49, 3057–3067 (1994).

    Article  Google Scholar 

  10. Ching, E. S. C. et al. Quasinormal-mode expansion for waves in open systems. Rev. Mod. Phys. 70, 1545–1554 (1998).

    Article  ADS  Google Scholar 

  11. Leung, P. T., Suen, W. M., Sun, C. P. & Young, K. Waves in open systems via a biorthogonal basis. Phys. Rev. E 57, 6101–6104 (1998).

    Article  ADS  Google Scholar 

  12. Alaeian, H. & Dionne, J. A. Non-Hermitian nanophotonic and plasmonic waveguides. Phys. Rev. B 89, 75136–75139 (2014).

    Article  ADS  Google Scholar 

  13. Heiss, W. D. Exceptional points: global and local aspects. AIP Conf. Proc. 597, 311–318 (2001).

  14. Heiss, W. D. Mathematical physics: circling exceptional points. Nat. Phys. 12, 823–824 (2016).

    Article  Google Scholar 

  15. Seyranian, A. P., Kirillov, O. N. & Mailybaev, A. A. Coupling of eigenvalues of complex matrices at diabolic and exceptional points. J. Phys. A. 38, 1723–1740 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Kodigala, A., Lepetit, T. & Kanté, B. Exceptional points in three-dimensional plasmonic nanostructures. Phys. Rev. B 94, 201103(R) (2016).

    Article  Google Scholar 

  17. Zheng, M. C., Christodoulides, D. N., Fleischmann, R. & Kottos, T. PT optical lattices and universality in beam dynamics. Phys. Rev. A 82, 010103(R) (2010).

    Google Scholar 

  18. Mayergoyz, I. D., Fredkin, D. R. & Zhang, Z. Electrostatic (plasmon) resonances in nanoparticles. Phys. Rev. B 72, 155412 (2005).

  19. Ouyang, F. & Isaacson, M. Surface plasmon excitation of objects with arbitrary shape and dielectric constant. Philos. Mag. B 60, 481–492 (1989).

    Article  ADS  Google Scholar 

  20. Yin, X. & Zhang, X. Unidirectional light propagation at exceptional points. Nat. Mater. 12, 175–177 (2013).

    Article  ADS  Google Scholar 

  21. Peng, B. et al. Parity time-symmetric whispering-gallery microcavities. Nat. Phys. 10, 394–398 (2014).

    Article  Google Scholar 

  22. Hahn, C. et al. Observation of exceptional points in reconfigurable non-Hermitian vector-field holographic lattices. Nat. Commun. 7, 12201 (2016).

    Article  ADS  Google Scholar 

  23. Choi, Y., Hahn, C., Yoon, J., Song, S. H. & Berini, P. Extremely broadband, on-chip optical nonreciprocity enabled by mimicking nonlinear anti-adiabatic quantum jumps near exceptional points. Nat. Commun. 8, 14154 (2017).

    Article  ADS  Google Scholar 

  24. García de Abajo, F. & Aizpurua, J. Numerical simulation of electron energy loss near inhomogeneous dielectrics. Phys. Rev. B 56, 15873–15884 (1997).

    Article  ADS  Google Scholar 

  25. Hohenester, U. & Trügler, A. MNPBEM – A Matlab toolbox for the simulation of plasmonic nanoparticles. Comput. Phys. Commun. 183, 370–381 (2012).

    Article  ADS  Google Scholar 

  26. Boudarham, G. & Kociak, M. Modal decompositions of the local electromagnetic density of states and spatially resolved electron energy loss probability in terms of geometric modes. Phys. Rev. B 85, 245447 (2012).

    Article  Google Scholar 

  27. Fredkin, D. R. & Mayergoyz, I. D. Resonant behavior of dielectric objects (electrostatic resonances). Phys. Rev. Lett. 91, 253902 (2003).

    Article  ADS  Google Scholar 

  28. Schmidt, F.-P. et al. Edge mode coupling within a plasmonic nanoparticle. Nano. Lett. 16, 5152–5155 (2016).

    Article  ADS  Google Scholar 

  29. Das, P., Lourenço-Martins H., Tizei, H. G. L., Weil, R. & Kociak, M. Nanocross: a highly tunable plasmonic system. J. Phys. Chem. C 121, 16521–16527 (2017).

    Article  Google Scholar 

  30. Trügler, A., Tinguely, J.-C., Krenn, J. R., Hohenau, A. & Hohenester, U. Influence of surface roughness on the optical properties of plasmonic nanoparticles. Phys. Rev. B 83, 81412 (2011).

    Article  ADS  Google Scholar 

  31. Schmidt, F.-P., Ditlbacher, H., Hofer, F., Krenn, J. R. & Hohenester, U. Morphing a plasmonic nanodisk into a nanotriangle. Nano. Lett. 14, 4810–4815 (2014).

    Article  ADS  Google Scholar 

  32. Zener, C. Non-adiabatic crossing of energy levels. Proc. Royal Soc. A 137, 696–702 (1932).

    Article  ADS  MATH  Google Scholar 

  33. Brown, L. V., Sobhani, H., Lassiter, J. B., Nordlander, P. & Halas, N. J. Heterodimers: plasmonic properties of mismatched nanoparticle pairs. ACS Nano 4, 819–832 (2010).

    Article  Google Scholar 

  34. Novotny, L. Strong coupling, energy splitting, and level crossings: a classical perspective. Am. J. Phys. 78, 1199–1202 (2010).

    Article  ADS  Google Scholar 

  35. Collins, S. M., Nicoletti, O., Rossouw, D., Ostasevicius, T. & Midgley, P. A. Excitation dependent Fano-like interference effects in plasmonic silver nanorods. Phys. Rev. B 90, 155419 (2014).

    Article  Google Scholar 

  36. Nordlander, P., Oubre, C., Prodan, E., Li, K. & Stockman, M. I. Plasmon hybridization in nanoparticle dimers. Nano. Lett. 4, 899–903 (2004).

    Article  ADS  Google Scholar 

  37. Nelayah, J. et al. Mapping surface plasmons on a single metallic nanoparticle. Nat. Phys. 3, 348–353 (2007).

    Article  Google Scholar 

  38. Bender, C. M. & Boettcher, S. Real spectra in non-hermitian hamiltonians having PT-symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Guo, A. et al. Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009).

    Google Scholar 

  40. Rüter, C. E. et al. Observation of parity–time symmetry in optics. Nat. Phys. 6, 192–195 (2010).

    Article  ADS  Google Scholar 

  41. Alaeian, H. & Dionne, J. A. Parity-time symmetric plasmonic metamaterials. Phys. Rev. A. 89, 033829 (2014).

    Article  ADS  Google Scholar 

  42. Musslimani, Z. H., Makris, K. G., El-Ganainy, R. & Christodoulides, D. N. Optical solitons in PT periodic potentials. Phys. Rev. Lett. 100, 030402 (2008).

    Article  ADS  MATH  Google Scholar 

  43. Makris, K. G., El-Ganainy, R., Christodoulides, D. N. & Musslimani, Z. H. Beam dynamics in PT symmetric optical lattices. Phys. Rev. Lett. 100, 103904 (2008).

    Article  MATH  Google Scholar 

  44. Gloter, A., Douiri, A., Tence, M. & Colliex, C. Improving energy resolution of EELS spectra: an alternative to the monochromator solution. Ultramicroscopy 96, 385–400 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

We thank O. Stéphan and M. Walls for in-depth reading of the manuscript. This work has received support from the French state managed by the National Agency for Research under the programme of future investment EQUIPEX TEMPOS-CHROMATEM with the reference ANR-10-EQPX-50.

Author information

Authors and Affiliations

Authors

Contributions

P.D., H.L.-M. and M.K. designed the experiments. H.L.-M., P.D., L.H.G.T. and M.K. performed the EELS experiments. R.W., P.D. and H.L.-M. prepared the samples. H.L.-M., P.D. and L.H.G.T. analysed the data. H.L.-M. and M.K. performed the theoretical analysis. H.L.-M. performed simulations. H.L.-M. and M.K. wrote the manuscript. H.L.-M., P.D., L.H.G.T. and M.K. discussed experimental and theoretical results, and participated in improvement of the manuscript.

Corresponding author

Correspondence to Mathieu Kociak.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

1. Physical Origin of Plasmonic Bi-Orthogonality, 2. LSP versus Electromagnetic Wave in Open Systems, 3. Phase Diagram, 4. Coupling Constant, 5. The Overlap Matrices, 6. Determination of the F-Symmetric Geometrical Configurations, 7. Experimental.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lourenço-Martins, H., Das, P., Tizei, L.H.G. et al. Self-hybridization within non-Hermitian localized plasmonic systems. Nature Phys 14, 360–364 (2018). https://doi.org/10.1038/s41567-017-0023-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-017-0023-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing