Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bending rigidity, sound propagation and ripples in flat graphene

Abstract

Many of the applications of graphene rely on its uneven stiffness and high thermal conductivity, but the mechanical properties of graphene—and, in general, of all two-dimensional materials—are still not fully understood. Harmonic theory predicts a quadratic dispersion for the out-of-plane flexural acoustic vibrational mode, which leads to the unphysical result that long-wavelength in-plane acoustic modes decay before vibrating for one period, preventing the propagation of sound. The robustness of quadratic dispersion has been questioned by arguing that the anharmonic phonon–phonon interaction linearizes it. However, this implies a divergent bending rigidity in the long-wavelength regime. Here we show that rotational invariance protects the quadratic flexural dispersion against phonon–phonon interactions, and consequently, the bending stiffness is non-divergent irrespective of the temperature. By including non-perturbative anharmonic effects in our calculations, we find that sound propagation coexists with a quadratic dispersion. We also show that the temperature dependence of the height fluctuations of the membrane, known as ripples, is fully determined by thermal or quantum fluctuations, but without the anharmonic suppression of their amplitude previously assumed. These conclusions should hold for all two-dimensional materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanical properties of graphene calculated with the atomistic potential.
Fig. 2: Sound propagation in graphene.
Fig. 3: Bending rigidity of graphene in the membrane model.
Fig. 4: Fourier transform of the height–height correlation function in the membrane model.

Similar content being viewed by others

Data availability

Source data are provided with this paper. All other data are available from the corresponding author upon reasonable request.

Code availability

The atomistic calculations of the SCHA theory are performed with the SSCHA code. This code is open source and can be downloaded from https://sscha.eu/. The SCHA calculations in the membrane model are performed with an in-house program adapting the distributed SCHA code, which is available from the corresponding author upon reasonable request.

References

  1. Landau, L. D. & Lifshitz, E. M. Statistical Physics (Pergamon, 1980).

  2. Mermin, N. D. Crystalline order in two dimensions. Phys. Rev. 176, 250 (1968).

    Article  ADS  Google Scholar 

  3. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  ADS  Google Scholar 

  4. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    Article  ADS  Google Scholar 

  5. Meyer, J. C. et al. The structure of suspended graphene sheets. Nature 446, 60–63 (2007).

    Article  ADS  Google Scholar 

  6. Nelson, D. R. & Peliti, L. Fluctuations in membranes with crystalline and hexatic order. J. Phys. France 48, 1085–1092 (1987).

    Article  Google Scholar 

  7. Fasolino, A., Los, J. H. & Katsnelson, M. I. Intrinsic ripples in graphene. Nat. Mater. 6, 858–861 (2007).

    Article  ADS  Google Scholar 

  8. Gazit, D. Correlation between charge inhomogeneities and structure in graphene and other electronic crystalline membranes. Phys. Rev. B 80, 161406 (2009).

    Article  ADS  Google Scholar 

  9. Gazit, D. Structure of physical crystalline membranes within the self-consistent screening approximation. Phys. Rev. E 80, 041117 (2009).

    Article  ADS  Google Scholar 

  10. San-Jose, P., González, J. & Guinea, F. Electron-induced rippling in graphene. Phys. Rev. Lett. 106, 045502 (2011).

    Article  ADS  Google Scholar 

  11. Bonilla, L. L. & Carpio, A. Ripples in a graphene membrane coupled to Glauber spins. J. Stat. Mech. 2012, P09015 (2012).

    Article  Google Scholar 

  12. Guinea, F., Le Doussal, P. & Wiese, K.J. Collective excitations in a large-d model for graphene. Phys. Rev. B 89, 125428 (2014).

    Article  ADS  Google Scholar 

  13. González, J. Rippling transition from electron-induced condensation of curvature field in graphene. Phys. Rev. B 90, 165402 (2014).

    Article  ADS  Google Scholar 

  14. Ruiz-García, M., Bonilla, L. & Prados, A. Ripples in hexagonal lattices of atoms coupled to Glauber spins. J. Stat. Mech. 2015, P05015 (2015).

    Article  MathSciNet  Google Scholar 

  15. Gornyi, I. V., Kachorovskii, V. Y & Mirlin, A. D. Rippling and crumpling in disordered free-standing graphene. Phys. Rev. B 92, 155428 (2015).

    Article  ADS  Google Scholar 

  16. Ruiz-García, M., Bonilla, L. L. & Prados, A. STM-driven transition from rippled to buckled graphene in a spin-membrane model. Phys. Rev. B 94, 205404 (2016).

    Article  ADS  Google Scholar 

  17. Bonilla, L. L. & Ruiz-García, M. Critical radius and temperature for buckling in graphene. Phys. Rev. B 93, 115407 (2016).

    Article  ADS  Google Scholar 

  18. Gornyi, I. V., Dmitriev, A. P., Mirlin, A. D. & Protopopov, I. V. Electron in the field of flexural vibrations of a membrane: quantum time, magnetic oscillations, and coherence breaking. J. Exp. Theor. Phys. 123, 322–347 (2016).

    Article  ADS  Google Scholar 

  19. Ruiz-García, M., Bonilla, L. L. & Prados, A. Bifurcation analysis and phase diagram of a spin-string model with buckled states. Phys. Rev. E 96, 062147 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  20. Cea, T., Ruiz-García, M., Bonilla, L. & Guinea, F. Numerical study of the rippling instability driven by electron-phonon coupling in graphene. Phys. Rev. B 101, 235428 (2020).

    Article  ADS  Google Scholar 

  21. Silva-Guillén, J.A. & Guinea, F. Electron heating and mechanical properties of graphene. Phys. Rev. B 101, 060102 (2020).

    Article  ADS  Google Scholar 

  22. Paulatto, L., Mauri, F. & Lazzeri, M. Anharmonic properties from a generalized third-order ab initio approach: theory and applications to graphite and graphene. Phys. Rev. B 87, 214303 (2013).

    Article  ADS  Google Scholar 

  23. Bonini, N., Garg, J. & Marzari, N. Acoustic phonon lifetimes and thermal transport in free-standing and strained graphene. Nano Lett. 12, 2673–2678 (2012).

    Article  ADS  Google Scholar 

  24. Wang, H. & Daw, M. S. Anharmonic renormalization of the dispersion of flexural modes in graphene using atomistic calculations. Phys. Rev. B 94, 155434 (2016).

    Article  ADS  Google Scholar 

  25. Los, J. H., Katsnelson, M. I., Yazyev, O. V., Zakharchenko, K. V. & Fasolino, A. Scaling properties of flexible membranes from atomistic simulations: application to graphene. Phys. Rev. B 80, 121405 (2009).

    Article  ADS  Google Scholar 

  26. Katsnelson, M. I. & Fasolino, A. Graphene as a prototype crystalline membrane. Acc. Chem. Res. 46, 97–105 (2013).

    Article  Google Scholar 

  27. Zakharchenko, K. V., Katsnelson, M. I. & Fasolino, A. Finite temperature lattice properties of graphene beyond the quasiharmonic approximation. Phys. Rev. Lett. 102, 046808 (2009).

    Article  ADS  Google Scholar 

  28. Mariani, E. & Von Oppen, F. Flexural phonons in free-standing graphene. Phys. Rev. Lett. 100, 076801 (2008).

    Article  ADS  Google Scholar 

  29. Amorim, B. et al. Thermodynamics of quantum crystalline membranes. Phys. Rev. B 89, 224307 (2014).

    Article  ADS  Google Scholar 

  30. De Andres, P. L., Guinea, F. & Katsnelson, M. I. Bending modes, anharmonic effects, and thermal expansion coefficient in single-layer and multilayer graphene. Phys. Rev. B 86, 144103 (2012).

    Article  ADS  Google Scholar 

  31. Michel, K. H., Costamagna, S. & Peeters, F. M. Theory of anharmonic phonons in two-dimensional crystals. Phys. Rev. B 91, 134302 (2015).

    Article  ADS  Google Scholar 

  32. Michel, K. H., Scuracchio, P. & Peeters, F. M. Sound waves and flexural mode dynamics in two-dimensional crystals. Phys. Rev. B 96, 094302 (2017).

    Article  ADS  Google Scholar 

  33. Le Doussal, P. & Radzihovsky, L. Self-consistent theory of polymerized membranes. Phys. Rev. Lett. 69, 1209–1212 (1992).

    Article  ADS  Google Scholar 

  34. Blees, M. K. et al. Graphene kirigami. Nature 524, 204–207 (2015).

    Article  ADS  Google Scholar 

  35. Lindahl, N. et al. Determination of the bending rigidity of graphene via electrostatic actuation of buckled membranes. Nano Lett. 12, 3526–3531 (2012).

    Article  ADS  Google Scholar 

  36. Al Taleb, A., Anemone, G., Farías, D. & Miranda, R. Acoustic surface phonons of graphene on Ni (111).Carbon 99, 416–422 (2016).

    Article  Google Scholar 

  37. Al Taleb, A., Yu, H.K., Anemone, G., Farías, D. & Wodtke, A. M. Helium diffraction and acoustic phonons of graphene grown on copper foil. Carbon 95, 731–737 (2015).

    Article  Google Scholar 

  38. Al Taleb, A., Anemone, G., Farías, D. & Miranda, R. Resolving localized phonon modes on graphene/Ir (111) by inelastic atom scattering. Carbon 133, 31–38 (2018).

    Article  Google Scholar 

  39. Tømterud, M. et al. Temperature dependent bending rigidity of graphene. Preprint at https://doi.org/10.48550/arXiv.2210.17250 (2022).

  40. Bianco, R., Errea, I., Paulatto, L., Calandra, M. & Mauri, F. Second-order structural phase transitions, free energy curvature, and temperature-dependent anharmonic phonons in the self-consistent harmonic approximation: theory and stochastic implementation. Phys. Rev. B 96, 014111 (2017).

    Article  ADS  Google Scholar 

  41. Errea, I., Calandra, M. & Mauri, F. Anharmonic free energies and phonon dispersions from the stochastic self-consistent harmonic approximation: application to platinum and palladium hydrides. Phys. Rev. B 89, 064302 (2014).

    Article  ADS  Google Scholar 

  42. Monacelli, L., Errea, I., Calandra, M. & Mauri, F. Pressure and stress tensor of complex anharmonic crystals within the stochastic self-consistent harmonic approximation. Phys. Rev. B 98, 024106 (2018).

    Article  ADS  Google Scholar 

  43. Rowe, P., Csányi, G., Alfè, D. & Michaelides, A. Development of a machine learning potential for graphene. Phys. Rev. B 97, 054303 (2018).

    Article  ADS  Google Scholar 

  44. Monacelli, L. & Mauri, F. Time-dependent self-consistent harmonic approximation: anharmonic nuclear quantum dynamics and time correlation functions. Phys. Rev. B 103, 104305 (2021).

    Article  ADS  Google Scholar 

  45. Lihm, J.-M. & Park, C.-H. Gaussian time-dependent variational principle for the finite-temperature anharmonic lattice dynamics. Phys. Rev. Res. 3, L032017 (2021).

    Article  Google Scholar 

  46. Wang, Z. K., Lim, H. S., Ng, S. C., Özyilmaz, B. & Kuok, M. H. Brillouin scattering study of low-frequency bulk acoustic phonons in multilayer graphene. Carbon 46, 2133–2136 (2008).

    Article  Google Scholar 

  47. Landau, L. D. & Lifshits, E. M. Theory of Elasticity (Addison-Wesley, 1959).

  48. Kownacki, J.-P. & Mouhanna, D. Crumpling transition and flat phase of polymerized phantom membranes. Phys. Rev. E 79, 040101 (2009).

    Article  ADS  Google Scholar 

  49. Roldán, R., Fasolino, A., Zakharchenko, K. V. & Katsnelson, M. I. Suppression of anharmonicities in crystalline membranes by external strain. Phys. Rev. B 83, 174104 (2011).

    Article  ADS  Google Scholar 

  50. Coquand, O. & Mouhanna, D. Flat phase of quantum polymerized membranes. Phys. Rev. E 94, 032125 (2016).

    Article  ADS  Google Scholar 

  51. Hašík, J., Tosatti, E. & Martoňák, R. Quantum and classical ripples in graphene. Phys. Rev. B 97, 140301 (2018).

    Article  ADS  Google Scholar 

  52. Wei, D. & Wang, F. Graphene: a partially ordered non-periodic solid. J. Chem. Phys. 141, 144701 (2014).

    Article  ADS  Google Scholar 

  53. Cepellotti, A. et al. Phonon hydrodynamics in two-dimensional materials. Nat. Commun. 6, 6400 (2015).

    Article  ADS  Google Scholar 

  54. Mahan, G. Many-Particle Physics. (Springer, 2000).

  55. Dion, M., Rydberg, H., Schröder, E., Langreth, D. C. & Lundqvist, B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 92, 246401 (2004).

    Article  ADS  Google Scholar 

  56. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  57. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892 (1990).

    Article  ADS  Google Scholar 

  58. Barone, V. et al. Role and effective treatment of dispersive forces in materials: polyethylene and graphite crystals as test cases. J. Comput. Chem. 30, 934–939 (2009).

    Article  Google Scholar 

  59. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  60. Ypma, T. J. Historical development of the Newton–Raphson method. SIAM Rev. 37, 531–551 (1995).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank F. Guinea for useful conversations. Financial support was provided by the Spanish Ministry of Economy and Competitiveness (FIS2016-76617-P); the Spanish Ministry of Science and Innovation (grant nos. PID2019-105488GB-I00 and PID2022-142861NA-I00); the Department of Education, Universities and Research of the Basque Government and the University of the Basque Country (IT1707-22 and IT1527-22); and the European Commission under the Graphene Flagship, Core3, grant no. 881603. M.C. acknowledges support from ICSC—Centro Nazionale di Ricerca in HPC, Big Data and Quantum Computing, funded by the European Union under NextGenerationEU. U.A. is thankful to the Material Physics Center for a predoctoral fellowship. J.D. thanks the Department of Education of the Basque Government for a predoctoral fellowship (grant no. PRE-2020-1-0220). L.M. acknowledges funding support from the European Union under the Marie Curie Individual Fellowship THERMOH. Computer facilities were provided by the Donostia International Physics Center (DIPC).

Author information

Authors and Affiliations

Authors

Contributions

U.A. and J.D. contributed equally. U.A. performed the atomistic calculations, whereas U.A., J.D. and T.C. performed the calculations on the membrane and developed the theoretical adaptation of SCHA theory to the membrane. L.M., T.C., R.B. and I.E. developed the mathematical proof of the relation between Green’s function and free energy Hessian. I.E. and F.M. supervised the full project. The manuscript was written by U.A., J.D. and I.E., with input from all authors.

Corresponding author

Correspondence to Ion Errea.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Negligible dynamic effects in the ZA mode frequencies.

Harmonic, and SCHA auxiliary and physical phonons (static and dynamic) calculated at 0 K (a) and 300 K (b) with the atomistic potential for the ZA mode.

Extended Data Fig. 2 Height-height correlation function as a function of the biaxial strain δa.

Impressively, the behavior for small q deviates from the q−4 law even for very small strains, for example δa = 10−5.

Extended Data Fig. 3 Bubble approximation in the static limit of the SCHA theory.

(a) Physical phonons in the static approach with the atomistic potential at 500 K including and neglecting \(\mathop{{{{\boldsymbol{\Phi }}}}}\limits^{(4)}\) in Eq. (11). (b) panel only includes the ZA modes and it is in logarithmic scale. The calculation is done in a 6 × 6 supercell.

Extended Data Fig. 4 Empirical potential benchmark I.

Harmonic phonon spectrum of graphene calculated with the machine learning empirical potential and ab initio. The calculations are done in a 6 × 6 supercell.

Extended Data Fig. 5 Empirical potential benchmark II.

Harmonic, and SCHA auxiliary and physical frequencies (static) using the DFT and machine learning (ML) forces. (a) panel shows the out-of-plane optical frequency at the Γ point and (b) panel the in-plane one.

Extended Data Fig. 6 Negative thermal expansion of graphene in the membrane model.

δa as a function of temperature in the membrane model.

Extended Data Fig. 7 Justification of the bubble and Lorentzian approximations in the calculation of spectral properties of the LA mode within the membrane model.

(a) Linewidth (full width at half maximum, FWHM) contribution of the term containing the fourth-order tensor of the LA mode calculated in the membrane model at 100 K using the harmonic and SCHA auxiliar phonons. The value of the smearing is in the legend. (b) Spectral function of the LA mode with momentum 0.01 Å−1 with and without considering the frequency dependence of the self energy.

Extended Data Fig. 8 Anharmonicity does not remove the quasiparticle picture of ZA modes.

Linewidth (full width half maximum) of ZA phonon mode divided by its frequency at 300K calculated within the membrane model. The ratio never gets bigger than 1.

Extended Data Fig. 9 Height-height correlation function showing a pure quantum behaviour.

Fourier transform of the height-height correlation function at 0 K in the membrane model evaluated at different levels of approximation: harmonic (black dots), anharmonic rotationally invariant (RI) result (green filled dots) and anharmonic no rotationally invariant (No RI) result (green empty dots). The dashed lines correspond to the linear fitting in each case.

Extended Data Fig. 10 Height-height correlation function showing a pure classical behaviour.

Fourier transform of the height-height correlation function at 300 K in the membrane model evaluated at different levels of approximation: harmonic (black dots), anharmonic RI result (green filled dots) and anharmonic No RI result (green empty dots). The dashed lines correspond to the linear fitting in each case.

Source data

Source Data Fig. 1

Numerical data. Comments for each panel are indicated with #.

Source Data Fig. 2

Numerical data. Comments for each panel are indicated with #.

Source Data Fig. 3

Numerical data. Comments for each panel are indicated with #.

Source Data Fig. 4

Numerical data. Comments for each panel are indicated with #.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aseginolaza, U., Diego, J., Cea, T. et al. Bending rigidity, sound propagation and ripples in flat graphene. Nat. Phys. (2024). https://doi.org/10.1038/s41567-024-02441-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41567-024-02441-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing