Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synthesis-on-substrate of quantum dot solids

Abstract

Perovskite light-emitting diodes (PeLEDs) with an external quantum efficiency exceeding 20% have been achieved in both green and red wavelengths1,2,3,4,5; however, the performance of blue-emitting PeLEDs lags behind6,7. Ultrasmall CsPbBr3 quantum dots are promising candidates with which to realize efficient and stable blue PeLEDs, although it has proven challenging to synthesize a monodispersed population of ultrasmall CsPbBr3 quantum dots, and difficult to retain their solution-phase properties when casting into solid films8. Here we report the direct synthesis-on-substrate of films of suitably coupled, monodispersed, ultrasmall perovskite QDs. We develop ligand structures that enable control over the quantum dots’ size, monodispersity and coupling during film-based synthesis. A head group (the side with higher electrostatic potential) on the ligand provides steric hindrance that suppresses the formation of layered perovskites. The tail (the side with lower electrostatic potential) is modified using halide substitution to increase the surface binding affinity, constraining resulting grains to sizes within the quantum confinement regime. The approach achieves high monodispersity (full-width at half-maximum = 23 nm with emission centred at 478 nm) united with strong coupling. We report as a result blue PeLEDs with an external quantum efficiency of 18% at 480 nm and 10% at 465 nm, to our knowledge the highest reported among perovskite blue LEDs by a factor of 1.5 and 2, respectively6,7.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Perovskite QD semiconducting solids.
Fig. 2: Formation of SoS of QD films.
Fig. 3: Optical and electrical properties of SoS of QD films.
Fig. 4: PeLED performance and operating stability.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in the published article and its Supplementary Information. Other data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Ma, D. et al. Distribution control enables efficient reduced-dimensional perovskite LEDs. Nature 599, 594–598 (2021).

    Article  ADS  CAS  Google Scholar 

  2. Lin, K. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245–248 (2018).

    Article  ADS  CAS  Google Scholar 

  3. Cao, Y. et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562, 249–253 (2018).

    Article  ADS  CAS  Google Scholar 

  4. Hassan, Y. et al. Ligand-engineered bandgap stability in mixed-halide perovskite LEDs. Nature 591, 72–77 (2021).

    Article  ADS  CAS  Google Scholar 

  5. Chiba, T. et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat. Photonics 12, 681–687 (2018).

    Article  ADS  CAS  Google Scholar 

  6. Liu, Y. et al. Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures. Nat. Photonics 13, 760–764 (2019).

    Article  ADS  CAS  Google Scholar 

  7. Dong, Y. et al. Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. Nat. Nanotechnol. 15, 668–674 (2020).

    Article  ADS  CAS  Google Scholar 

  8. Shamsi, J. et al. To nano or not to nano for bright halide perovskite emitters. Nat. Nanotechnol. 16, 1164–1168 (2021).

    Article  ADS  CAS  Google Scholar 

  9. Chen, Q. et al. All-inorganic perovskite nanocrystal scintillators. Nature 561, 88–93 (2018).

    Article  ADS  CAS  Google Scholar 

  10. Li, Z. et al. Modulation of recombination zone position for quasi-two-dimensional blue perovskite light-emitting diodes with efficiency exceeding 5%. Nat. Commun. 10, 1027 (2019).

    Article  ADS  Google Scholar 

  11. Hou, J. et al. Liquid-phase sintering of lead halide perovskites and metal-organic framework glasses. Science 374, 621–625 (2021).

    Article  ADS  CAS  Google Scholar 

  12. Karlsson, M. et al. Mixed halide perovskites for spectrally stable and high-efficiency blue light-emitting diodes. Nat. Commun. 12, 361 (2021).

    Article  CAS  Google Scholar 

  13. Wang, C. et al. Dimension control of in situ fabricated CsPbClBr2 nanocrystal films toward efficient blue light-emitting diodes. Nat. Commun. 11, 6428 (2020).

    Article  ADS  CAS  Google Scholar 

  14. Nedelcu, G. et al. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 15, 5635–5640 (2015).

    Article  ADS  CAS  Google Scholar 

  15. Liu, X. et al. Metal halide perovskites for light-emitting diodes. Nat. Mater. 20, 10–21 (2021).

    Article  ADS  CAS  Google Scholar 

  16. Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015).

    Article  ADS  CAS  Google Scholar 

  17. Akkerman, Q. A., Raino, G., Kolalenko, M. V. & Manna, L. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 17, 394–405 (2018).

    Article  ADS  CAS  Google Scholar 

  18. Kovalenko, M. V., Protesescu, L. & Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 358, 745–750 (2017).

    Article  ADS  CAS  Google Scholar 

  19. Akkerman, Q. A. et al. Controlling the nucleation and growth kinetics of lead halide perovskite quantum dots. Science 377, 1406–1412 (2022).

    Article  ADS  CAS  Google Scholar 

  20. Li, X., Hoffman, J. M. & Kanatzidis, M. G. The 2D halide perovskite rulebook: how the spacer influences everything from the structure to optoelectronic device efficiency. Chem. Rev. 121, 2230–2291 (2021).

    Article  CAS  Google Scholar 

  21. Miao, Y. et al. In situ growth of ultra-thin perovskitoid layer to stabilize and passivate MAPbI3 for efficient and stable photovoltaics. eScience 1, 91–97 (2021).

    Article  Google Scholar 

  22. Munir, R. et al. Hybrid perovskite thin-film photovoltaics: in situ diagnostics and importance of the precursor solvate phases. Adv. Mater. 29, 1604113 (2017).

    Article  Google Scholar 

  23. Wang, Y. et al. Chelating-agent-assisted control of CsPbBr3 quantum well growth enables stable blue perovskite emitters. Nat. Commun. 11, 3674 (2020).

    Article  ADS  CAS  Google Scholar 

  24. Ma, D. et al. Chloride insertion-immobilization enables bright, narrowband, and stable blue-emitting perovskite diodes. J. Am. Chem. Soc. 142, 5126–5134 (2020).

    Article  CAS  Google Scholar 

  25. Lyu, R., Moore, C. E., Liu, T., Yu, Y. & Wu, Y. Predictive design model for low-dimensional organic-inorganic halide perovskites assisted by machine learning. J. Am. Chem. Soc. 143, 12766–12776 (2021).

    Article  CAS  Google Scholar 

  26. Koegel, A. A. et al. Correlating broadband photoluminescence with structural dynamics in layered hybrid halide perovskites. J. Am. Chem. Soc. 144, 1313–1322 (2022).

    Article  CAS  Google Scholar 

  27. Xue, J., Wang, R. & Yang, Y. The surface of halide perovskites from nano to bulk. Nat. Rev. Mater. 5, 809–827 (2020).

    Article  ADS  CAS  Google Scholar 

  28. Cui, J. et al. Efficient light-emitting diodes based on oriented perovskite nanoplatelets. Sci. Adv. 7, eabg8458 (2021).

    Article  ADS  CAS  Google Scholar 

  29. Blancon, J., Een, J., Stoumpos, C. C., Kanatzidis, M. G. & Mohite, A. D. Semiconductor physics of organic–inorganic 2D halide perovskites. Nat. Nanotechnol. 15, 969–985 (2020).

    Article  ADS  CAS  Google Scholar 

  30. Peng, X., Wickham, J. & Alivisatos, A. P. Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: “focusing” of size distributions. J. Am. Chem. Soc. 120, 5343–5344 (1998).

    Article  CAS  Google Scholar 

  31. Li, X. et al. Evidence for ferroelectricity of all-inorganic perovskite CsPbBr3 quantum dots. J. Am. Chem. Soc. 142, 3316–3320 (2020).

    Article  CAS  Google Scholar 

  32. Dong, Y. et al. Precise control of quantum confinement in cesium lead halide perovskite quantum dots via thermodynamic equilibrium. Nano Lett. 18, 3716–3722 (2018).

    Article  ADS  CAS  Google Scholar 

  33. Yang, W. et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2015).

    Article  ADS  CAS  Google Scholar 

  34. Baranyi, A. D., Onyszchuk, M., Page, Y. L. & Donnay, G. The crystal and molecular structure of lead (II) bromide-bis-dimethylsulphoxide, PbBr22[(CH3)2SO]. Can. J. Chem. 55, 849–855 (1977).

    Article  CAS  Google Scholar 

  35. Lamer, V. & Dinergar, R. Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 72, 4847–4854 (1950).

    Article  CAS  Google Scholar 

  36. Huang, H. et al. Growth mechanism of strongly emitting CH3NH3PbBr3 perovskite nanocrystals with a tunable bandgap. Nat. Commun. 8, 996 (2017).

    Article  ADS  Google Scholar 

  37. Lifshitz, I. M. & Slyozov, V. V. The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 19, 35–50 (1961).

    Article  ADS  Google Scholar 

  38. Peng, X. et al. Shape control of CdSe nanocrystals. Nature 404, 59–61 (2000).

    Article  ADS  CAS  Google Scholar 

  39. Miyata, A. et al. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites. Nat. Phys. 11, 582–587 (2015).

    Article  CAS  Google Scholar 

  40. D’Innocenzo, V. et al. Excitons versus free charges in organo-lead tri-halide perovskites. Nat. Commun. 5, 3586 (2014).

    Article  ADS  Google Scholar 

  41. deQuilettes, D. W. et al. Charge-carrier recombination in halide perovskites. Chem. Rev. 119, 11007–11019 (2019).

    Article  CAS  Google Scholar 

  42. Xue, J. et al. Surface ligand management for stable FAPbI3 perovskite quantum dot solar cells. Joule 2, 1866–1878 (2018).

    Article  CAS  Google Scholar 

  43. Hao, M. et al. Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1−xFAxPbI3 quantum dot solar cells with reduced phase segregation. Nat. Energy 5, 79–88 (2020).

    Article  ADS  CAS  Google Scholar 

  44. Liu, M. et al. Suppression of temperature quenching in perovskite nanocrystals for efficient and thermally stable light-emitting diodes. Nat. Photonics 15, 379–385 (2021).

    Article  ADS  CAS  Google Scholar 

  45. International Telecommunication Union. Recommendation ITU-R BT.2100-2: Image Parameter Values for High Dynamic Range Television for Use in Production and International Programme Exchange (ITU, 2018); https://www.itu.int/rec/R-REC-BT.2100-2-201807-I/en.

  46. Chen, S. et al. Atomic scale insights into structure instability and decomposition pathway of methylammonium lead iodide perovskite. Nat. Commun. 9, 4807 (2018).

    Article  ADS  Google Scholar 

  47. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  ADS  CAS  Google Scholar 

  48. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  CAS  Google Scholar 

  49. Lee, K., Murray, É. D., Kong, L., Lundqvist, B. I. & Langreth, D. C. Higher-accuracy van der Waals density functional. Phys. Rev. B 82, 081101 (2010).

    Article  ADS  Google Scholar 

  50. Proppe, A. H. et al. Multication perovskite 2D/3D interfaces form via progressive dimensional reduction. Nat. Commun. 12, 3472 (2021).

    Article  ADS  CAS  Google Scholar 

  51. Yang, Y., Gao, F., Gao, S. & Wei, S. H. Origin of the stability of two-dimensional perovskites: a first-principles study. J. Mater. Chem. A 6, 14949–14955 (2018).

    Article  CAS  Google Scholar 

  52. Fu, Y. et al. Stabilization of the metastable lead iodide perovskite phase via surface functionalization. Nano Lett. 17, 4405–4414 (2017).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by National Key Research and Development Program of China (2022YFE0201500). We acknowledge financial support from the National Natural Science Foundation of China (nos 91956130, 62104116, 22121005 and 52072185). Y.J. acknowledges the project funded by the China Postdoctoral Science Foundation (no. 2021M701773). M.Y. acknowledges financial support from Distinguished Young Scholars of Tianjin (no. 19JCJQJC62000). We thank the staff of beamlines BL17B1, BL14B1, BL19U2, BL19U1 and BL01B1 at SSRF for providing the beam time and User Experiment Assist System of SSRF for their help. This work was partly supported by Analysis Platform of New Matter Structure at Nankai University.

Author information

Authors and Affiliations

Authors

Contributions

M.Y. conceived the idea. M.Y., J.C. and E.H.S. guided the project. Y.J. and M.Y. developed the SoS of QD films. C.S., Yuan Liu and H.W. carried out the device fabrication and characterizations. S.L. and Y.Y. carried out GIWAXS measurements and analyses. Y.J., M.C., C.Q. and Yufang Liu performed transient absorption characterizations and analysed the data. J.X., S.H. and E.H.S carried out theoretical calculations. C.S., K.W., T.Z. and W.Z. carried out the TEM characterization. X.F. and Yaqi Liu helped to synthesize the materials and collect the data. J.Y., S.G. and J.P. contributed to the schematics and photographs. Y.J., J.X., J.C., M.Y. and E.H.S. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Edward H. Sargent, Jun Chen or Mingjian Yuan.

Ethics declarations

Competing interests

The authors have filed a provisional patent for this work to the China National Intellectual Property Administration (CNIPA).

Peer review

Peer review information

Nature thanks Hendrik Utzat and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 SoS of RGB QD films.

a, PL and absorption spectra of CsPbBr3 and CsPbI3 QD films fabricated via SoS with various ligand concentrations (from 0 to 0.28 M); inset: photographs of QD films under excitation. Since CsPbI3 suffers from phase stability, we were not able to stabilize ultrasmall CsPbI3 QDs with emission wavelength of below 640 nm. b,c, XRD patterns of CsPbBr3 (b) and CsPbI3 (c) QD films. d, Transient absorption spectra of CsPbI3 QD films (641 nm).

Extended Data Fig. 2 TEM characterization for CsPbBr3 QDs.

ai, TEM images for CsPbBr3 (463 nm) (ac), CsPbBr3 (478 nm) (df) and CsPbBr3 (515 nm) (gi) QDs. To avoid possible beam damage and phase transition of perovskite QDs, live time was set to ensure a dose rate of below 10 e Å−2 s−1. The inter-planar distance was calculated by average distance value (dadv.) between five lattice fringes. The statistical diameter histogram was obtained by counting over 50 QDs. j, Relationship among ligand concentration, the peak wavelength of QD films and the size of the QDs.

Extended Data Fig. 3 2D formation feasibility of perovskites.

a, Steric effect index (STEI) of PEA+, MBA+ and DMA+ ligands. b, Octahedral distortion index and effective coordination number for PEA+- or MBA+- substituted CsPbBr3 (left) and MBA+- or DMA+-substituted CsPbI3 (right) perovskite slabs. c, Interaction energies (Eint) of adjacent fragments at their interfaces for PEA+- or MBA+-substituted CsPbBr3 perovskite slabs and MBA+- or DMA+-substituted CsPbI3 perovskite slabs. d, Formation energy differences (ΔEf) for CsPbBr3 and CsPbI3 layered perovskites with n values of 1 and 2.

Extended Data Fig. 4 Transient absorption characterization of CsPbBr3 QDs.

ah, Time-wavelength-dependent transient absorption spectra for CsPbBr3 QD films fabricated via SoS by adding various amounts of ligand (from 0 to 0.28 M).

Extended Data Fig. 5 XRD pattern of the intermediate phase powder.

The intermediate phase powder was obtained via the antisolvent-diffusion method. All the diffraction peaks can be indexed as the PbBr2-2DMSO complex.

Extended Data Fig. 6 Steady-state PL characteristics of CsPbBr3 QD films with different capping ligands.

a,b, Steady-state PL spectra (a) and corresponding PL peak positions (b) of CsPbBr3 perovskite QD films with different X-MBA+ ligands.

Extended Data Fig. 7 Morphological properties of perovskite QD films.

af, SEM (ac) and AFM (df) images for CsPbBr3 (463 nm; a,d), CsPbBr3 (478 nm; b,e) and CsPbBr3 (515 nm; c,f) QD films. r.m.s., root mean square.

Extended Data Fig. 8 EL performance of RGB PeLEDs.

a, JLV curves of the RGB PeLEDs. b, EL spectra of the PeLEDs operating at different voltages. ce, EL peak position and FWHM evolution as a function of time for the PeLEDs. The operational stability measurement was carried out with initial luminance of ~100 cd m−2. fi, Half-lifetime (T50) measurements for the PeLEDs.

Extended Data Fig. 9 Histogram of PeLEDs.

ah, Histograms of peak EQEs (ad) and maximum luminance (e–h) values for the PeLEDs based on CsPbBr3 (463 nm; a,e), CsPbBr3 (478 nm; b,g), CsPbBr3 (515 nm; c,f), and CsPbI3 (678 nm; d,h) QDs. Detailed data have been provided in Supplementary Note 9.

Extended Data Table 1 Summary of efficient blue PeLEDs (EQE > 5%) reported to date Refs. 6,7,12,13,23,24

Supplementary information

Supplementary Information

This file contains Supplementary Notes 1–10, Supplementary Figures 1–22, Supplementary Tables 1–3 and Supplementary References.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Sun, C., Xu, J. et al. Synthesis-on-substrate of quantum dot solids. Nature 612, 679–684 (2022). https://doi.org/10.1038/s41586-022-05486-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-05486-3

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing