Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Observation of Nagaoka polarons in a Fermi–Hubbard quantum simulator

Abstract

Quantum interference can deeply alter the nature of many-body phases of matter1. In the case of the Hubbard model, Nagaoka proved that introducing a single itinerant charge can transform a paramagnetic insulator into a ferromagnet through path interference2,3,4. However, a microscopic observation of this kinetic magnetism induced by individually imaged dopants has been so far elusive. Here we demonstrate the emergence of Nagaoka polarons in a Hubbard system realized with strongly interacting fermions in a triangular optical lattice5,6. Using quantum gas microscopy, we image these polarons as extended ferromagnetic bubbles around particle dopants arising from the local interplay of coherent dopant motion and spin exchange. By contrast, kinetic frustration due to the triangular geometry promotes antiferromagnetic polarons around hole dopants7. Our work augurs the exploration of exotic quantum phases driven by charge motion in strongly correlated systems and over sizes that are challenging for numerical simulation8,9,10.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nagaoka polarons in a Fermi–Hubbard quantum simulator.
Fig. 2: Emergence of Nagaoka polarons around particle dopants.
Fig. 3: Antiferromagnetic polarons around holes and doping dependence of correlations.
Fig. 4: Critical doping for ferromagnetic correlations.

Similar content being viewed by others

Data availability

The datasets generated and analysed during this study are available from the corresponding author on reasonable request. Source data are provided with this paper.

Code availability

The codes used for the analysis are available from the corresponding author on reasonable request.

References

  1. Auerbach, A. Interacting Electrons and Quantum Magnetism (Springer, 2012).

  2. Nagaoka, Y. Ferromagnetism in a narrow, almost half-filled s band. Phys. Rev. 147, 392–405 (1966).

    Article  ADS  CAS  Google Scholar 

  3. Thouless, D. J. Exchange in solid 3He and the Heisenberg Hamiltonian. Proc. Phys. Soc. 86, 893 (1965).

    Article  ADS  CAS  Google Scholar 

  4. Tasaki, H. Extension of Nagaoka’s theorem on the large-U Hubbard model. Phys. Rev. B 40, 9192–9193 (1989).

    Article  ADS  CAS  Google Scholar 

  5. Shastry, B. S., Krishnamurthy, H. R. & Anderson, P. W. Instability of the Nagaoka ferromagnetic state of the U =  Hubbard model. Phys. Rev. B 41, 2375–2379 (1990).

    Article  ADS  CAS  Google Scholar 

  6. White, S. R. & Affleck, I. Density matrix renormalization group analysis of the Nagaoka polaron in the two-dimensional t − J model. Phys. Rev. B 64, 024411 (2001).

    Article  ADS  Google Scholar 

  7. Haerter, J. O. & Shastry, B. S. Kinetic antiferromagnetism in the triangular lattice. Phys. Rev. Lett. 95, 087202 (2005).

    Article  ADS  PubMed  Google Scholar 

  8. Anderson, P. W. Resonating valence bonds: a new kind of insulator?. Mater. Res. Bull. 8, 153–160 (1973).

    Article  CAS  Google Scholar 

  9. Balents, L. Spin liquids in frustrated magnets. Nature 464, 199–208 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Zhou, Y., Kanoda, K. & Ng, T.-K. Quantum spin liquid states. Rev. Mod. Phys. 89, 025003 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  11. Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

    Article  ADS  CAS  Google Scholar 

  12. Doucot, B. & Wen, X. G. Instability of the Nagaoka state with more than one hole. Phys. Rev. B 40, 2719 (1989).

    Article  ADS  CAS  Google Scholar 

  13. Fang, Y., Ruckenstein, A. E., Dagotto, E. & Schmitt-Rink, S. Holes in the infinite-U Hubbard model: instability of the Nagaoka state. Phys. Rev. B 40, 7406–7409 (1989).

    Article  ADS  CAS  Google Scholar 

  14. Basile, A. G. & Elser, V. Stability of the ferromagnetic state with respect to a single spin flip: variational calculations for the U =  Hubbard model on the square lattice. Phys. Rev. B 41, 4842–4845 (1990).

    Article  ADS  CAS  Google Scholar 

  15. Barbieri, A., Riera, J. A. & Young, A. P. Stability of the saturated ferromagnetic state in the one-band Hubbard model. Phys. Rev. B 41, 11697–11700 (1990).

    Article  ADS  CAS  Google Scholar 

  16. Hanisch, T., Kleine, B., Ritzl, A. & Müller-Hartmann, E. Ferromagnetism in the Hubbard model: instability of the Nagaoka state on the triangular, honeycomb and kagome lattices. Ann. Phys. 507, 303–328 (1995).

    Article  Google Scholar 

  17. Wurth, P., Uhrig, G. & Müller-Hartmann, E. Ferromagnetism in the Hubbard model on the square lattice: Improved instability criterion for the Nagaoka state. Ann. Phys. 508, 148–155 (1996).

    Article  Google Scholar 

  18. Park, H., Haule, K., Marianetti, C. A. & Kotliar, G. Dynamical mean-field theory study of Nagaoka ferromagnetism. Phys. Rev. B 77, 035107 (2008).

    Article  ADS  Google Scholar 

  19. Liu, L., Yao, H., Berg, E., White, S. R. & Kivelson, S. A. Phases of the infinite U Hubbard model on square lattices. Phys. Rev. Lett. 108, 126406 (2012).

    Article  ADS  PubMed  Google Scholar 

  20. Zhu, Z., Sheng, D. N. & Vishwanath, A. Doped Mott insulators in the triangular-lattice Hubbard model. Phys. Rev. B 105, 205110 (2022).

    Article  ADS  CAS  Google Scholar 

  21. Dehollain, J. P. et al. Nagaoka ferromagnetism observed in a quantum dot plaquette. Nature 579, 528–533 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Tang, Y. et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Ciorciaro, L. et al. Kinetic magnetism in triangular moiré materials. Nature 623, 509–513 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xu, M. et al. Frustration- and doping-induced magnetism in a Fermi–Hubbard simulator. Nature 620, 971–976 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Struck, J. et al. Quantum simulation of frustrated classical magnetism in triangular optical lattices. Science 333, 996–999 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Yamamoto, R., Ozawa, H., Nak, D. C., Nakamura, I. & Fukuhara, T. Single-site-resolved imaging of ultracold atoms in a triangular optical lattice. New J. Phys. 22, 123028 (2020).

    Article  ADS  CAS  Google Scholar 

  27. Yang, J., Liu, L., Mongkolkiattichai, J. & Schauss, P. Site-resolved imaging of ultracold fermions in a triangular-lattice quantum gas microscope. PRX Quantum 2, 020344 (2021).

    Article  ADS  Google Scholar 

  28. Mongkolkiattichai, J., Liu, L., Garwood, D., Yang, J. & Schauss, P. Quantum gas microscopy of fermionic triangular-lattice Mott insulators. Phys. Rev. A 108, L061301 (2023).

    Article  ADS  CAS  Google Scholar 

  29. Trisnadi, J., Zhang, M., Weiss, L. & Chin, C. Design and construction of a quantum matter synthesizer. Rev. Sci. Instrum. 93, 083203 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Zhang, S.-S., Zhu, W. & Batista, C. D. Pairing from strong repulsion in triangular lattice Hubbard model. Phys. Rev. B 97, 140507 (2018).

    Article  ADS  CAS  Google Scholar 

  31. van de Kraats, J., Nielsen, K. K. & Bruun, G. M. Holes and magnetic polarons in a triangular lattice antiferromagnet. Phys. Rev. B 106, 235143 (2022).

    Article  ADS  Google Scholar 

  32. Davydova, M., Zhang, Y. & Fu, L. Itinerant spin polaron and metallic ferromagnetism in semiconductor moiré superlattices. Phys. Rev. B 107, 224420 (2023).

    Article  ADS  CAS  Google Scholar 

  33. Chen, S. A., Chen, Q. & Zhu, Z. Proposal for asymmetric photoemission and tunneling spectroscopies in quantum simulators of the triangular-lattice Fermi-Hubbard model. Phys. Rev. B 106, 085138 (2022).

    Article  ADS  CAS  Google Scholar 

  34. Morera, I., Weitenberg, C., Sengstock, K. & Demler, E. Exploring kinetically induced bound states in triangular lattices with ultracold atoms: spectroscopic approach. Preprint at https://arxiv.org/abs/2312.00768 (2023).

  35. Morera, I. et al. High-temperature kinetic magnetism in triangular lattices. Phys. Rev. Res. 5, L022048 (2023).

    Article  CAS  Google Scholar 

  36. Schlömer, H., Schollwöck, U., Bohrdt, A. & Grusdt, F. Kinetic-to-magnetic frustration crossover and linear confinement in the doped triangular t − J model. Preprint at https://arxiv.org/abs/2305.02342 (2023).

  37. Samajdar, R. & Bhatt, R. N. Nagaoka ferromagnetism in doped Hubbard models in optical lattices. Preprint at https://arxiv.org/abs/2305.05683 (2023).

  38. Brinkman, W. F. & Rice, T. M. Single-particle excitations in magnetic insulators. Phys. Rev. B 2, 1324–1338 (1970).

    Article  ADS  Google Scholar 

  39. Shraiman, B. I. & Siggia, E. D. Two-particle excitations in antiferromagnetic insulators. Phys. Rev. Lett. 60, 740–743 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Sachdev, S. Hole motion in a quantum Néel state. Phys. Rev. B 39, 12232–12247 (1989).

    Article  ADS  CAS  Google Scholar 

  41. Grusdt, F. et al. Parton theory of magnetic polarons: mesonic resonances and signatures in dynamics. Phys. Rev. X 8, 011046 (2018).

    CAS  Google Scholar 

  42. Koepsell, J. et al. Imaging magnetic polarons in the doped Fermi–Hubbard model. Nature 572, 358–362 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Ji, G. et al. Coupling a mobile hole to an antiferromagnetic spin background: transient dynamics of a magnetic polaron. Phys. Rev. X 11, 021022 (2021).

    CAS  Google Scholar 

  44. Koepsell, J. et al. Microscopic evolution of doped Mott insulators from polaronic metal to Fermi liquid. Science 374, 82–86 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Prichard, M. L. et al. Directly imaging spin polarons in a kinetically frustrated Hubbard system. Nature https://doi.org/10.1038/s41586-024-07356-6 (2024).

  46. Yao, H., Tsai, W.-F. & Kivelson, S. A. Myriad phases of the checkerboard Hubbard model. Phys. Rev. B 76, 161104 (2007).

    Article  ADS  Google Scholar 

  47. Sposetti, C. N., Bravo, B., Trumper, A. E., Gazza, C. J. & Manuel, L. O. Classical antiferromagnetism in kinetically frustrated electronic models. Phys. Rev. Lett. 112, 187204 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Kaminski, A. & Das Sarma, S. Polaron percolation in diluted magnetic semiconductors. Phys. Rev. Lett. 88, 247202 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Szasz, A., Motruk, J., Zaletel, M. P. & Moore, J. E. Chiral spin liquid phase of the triangular lattice Hubbard model: a density matrix renormalization group study. Phys. Rev. X 10, 021042 (2020).

    CAS  Google Scholar 

  50. Weber, C., Läuchli, A., Mila, F. & Giamarchi, T. Magnetism and superconductivity of strongly correlated electrons on the triangular lattice. Phys. Rev. B 73, 014519 (2006).

    Article  ADS  Google Scholar 

  51. Song, X.-Y., Vishwanath, A. & Zhang, Y.-H. Doping the chiral spin liquid: topological superconductor or chiral metal. Phys. Rev. B 103, 165138 (2021).

    Article  ADS  CAS  Google Scholar 

  52. Morera, I. & Demler, E. Itinerant magnetism and magnetic polarons in the triangular lattice Hubbard model. Preprint at https://arxiv.org/abs/2402.14074 (2024).

  53. Morera, I., Bohrdt, A., Ho, W. W. & Demler, E. Attraction from frustration in ladder systems. Preprint at https://arxiv.org/abs/2106.09600 (2021).

  54. Foutty, B. A. et al. Tunable spin and valley excitations of correlated insulators in γ-valley moiré bands. Nat. Mater. 22, 731–736 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  55. Tao, Z. et al. Observation of spin polarons in a frustrated moiré Hubbard system. Nat. Phys. https://doi.org/10.1038/s41567-024-02434-y (2024).

  56. Schrieffer, J. R., Wen, X.-G. & Zhang, S.-C. Spin-bag mechanism of high-temperature superconductivity. Phys. Rev. Lett. 60, 944 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Majumdar, C. K. & Ghosh, D. K. On Next-Nearest-Neighbor Interaction in Linear Chain. I. J. Math. Phys. 10, 1388–1398 (1969).

    Article  ADS  MathSciNet  Google Scholar 

  58. Bakr, W. S., Gillen, J. I., Peng, A., Fölling, S. & Greiner, M. A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice. Nature 462, 74–77 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Parsons, M. F. et al. Site-resolved measurement of the spin-correlation function in the Fermi-Hubbard model. Science 353, 1253–1256 (2016).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  60. Khatami, E. & Rigol, M. Thermodynamics of strongly interacting fermions in two-dimensional optical lattices. Phys. Rev. A 84, 053611 (2011).

    Article  ADS  Google Scholar 

  61. Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).

    Article  ADS  CAS  Google Scholar 

  62. Zürn, G. et al. Precise characterization of 6Li Feshbach resonances using trap-sideband-resolved RF spectroscopy of weakly bound molecules. Phys. Rev. Lett. 110, 135301 (2013).

    Article  ADS  PubMed  Google Scholar 

  63. Hirthe, S. et al. Magnetically mediated hole pairing in fermionic ladders of ultracold atoms. Nature 613, 463–467 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bohrdt, A., Homeier, L., Bloch, I., Demler, E. & Grusdt, F. Strong pairing in mixed-dimensional bilayer antiferromagnetic Mott insulators. Nat. Phys. 18, 651–656 (2022).

    Article  CAS  Google Scholar 

  65. Lanczos, C. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Natl Bur. Stand, 45, 255–282 (1950).

    Article  MathSciNet  Google Scholar 

  66. Prelovsek, P. in The Physics of Correlated Insulators, Metals, and Superconductors (eds Pavarini, E. et al.) Ch. 7 (Forschungszentrum Jülich, Institute for Advanced Simulation, 2017).

  67. Kale, A. et al. Schrieffer-Wolff transformations for experiments: dynamically suppressing virtual doublon-hole excitations in a Fermi-Hubbard simulator. Phys. Rev. A 106, 012428 (2022).

    Article  ADS  CAS  Google Scholar 

  68. MacDonald, A. H., Girvin, S. M. & Yoshioka, D. t/U expansion for the Hubbard model. Phys. Rev. B 37, 9753–9756 (1988).

    Article  ADS  CAS  Google Scholar 

  69. Abrikosov, A. A., Gorkov, L. P. & Dzyaloshnski, I. Y. Methods of Quantum Field Theory in Statistical Physics (Pergamon, 1965).

  70. Rossi, R. Determinant diagrammatic monte carlo algorithm in the thermodynamic limit. Phys. Rev. Lett. 119, 045701 (2017).

    Article  ADS  PubMed  Google Scholar 

  71. Varney, C. N. et al. Quantum monte carlo study of the two-dimensional fermion hubbard model. Phys. Rev. B 80, 075116 (2009).

    Article  ADS  Google Scholar 

  72. Rigol, M., Bryant, T. & Singh, R. R. P. Numerical linked-cluster approach to quantum lattice models. Phys. Rev. Lett. 97, 187202 (2006).

    Article  ADS  PubMed  Google Scholar 

  73. Tang, B., Khatami, E. & Rigol, M. A short introduction to numerical linked-cluster expansions. Comp. Phys. Commun. 184, 557–564 (2013).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  74. Hauschild, J. & Pollmann, F. Efficient numerical simulations with tensor networks: Tensor Network Python (TeNPy). SciPost Phys. Lect. Notes https://doi.org/10.21468/SciPostPhysLectNotes.5 (2018).

Download references

Acknowledgements

We thank W. Bakr, T. Esslinger, B. S. Shastry, R. T. Scalettar, A. Bohrdt, F. Grusdt, H. Schlömer and R. Samajdar for their discussions. We acknowledge support from the Gordon and Betty Moore Foundation, grant no. GBMF-11521; the National Science Foundation (NSF), grants nos. PHY-1734011, OAC-1934598 and OAC-2118310; the ONR, grant no. N00014-18-1-2863; the DOE, QSA Lawrence Berkeley Lab award no. DE-AC02-05CH11231; QuEra, grant no. A44440; the ARO/AFOSR/ONR DURIP, grants nos. W911NF-20-1-0104 and W911NF-20-1-0163. M.L. acknowledges support from the Swiss National Science Foundation (SNSF) and the Max Planck/Harvard Research Center for Quantum Optics. L.H.K. and A.K. acknowledge support from the NSF Graduate Research Fellowship Program. Y.G. acknowledges support from the AWS Generation Q Fund at the Harvard Quantum Initiative. I.M. acknowledges support from grant no. PID2020-114626GB-I00 from the MICIN/AEI/10.13039/501100011033, Secretaria d’Universitats i Recerca del Departament d’Empresa i Coneixement de la Generalitat de Catalunya, cofunded by the European Union Regional Development Fund within the ERDF Operational Program of Catalunya (project no. QuantumCat, ref. 001-P-001644). E.K. and P.S. acknowledge support from the NSF under grant no. DMR-1918572. E.D. and I.M. acknowledge support from the SNSF project 200021_212899 and the NCCR SPIN of the SNSF. NLCE calculations were done on the Spartan high-performance computing facility at San José State University.

Author information

Authors and Affiliations

Authors

Contributions

M.L., M.X., L.H.K., A.K. and Y.G. performed the experiment and analysed the data. The numerical simulations were performed by M.X. (DQMC), L.H.K. (non-interacting), A.K. (FTLM), P.S. (NLCE), I.M. (DMRG) and E.K. (NLCE). I.M., E.K. and E.D. developed the theoretical framework. M.G. supervised the study. All authors contributed to the interpretation of the results and production of the paper.

Corresponding author

Correspondence to Markus Greiner.

Ethics declarations

Competing interests

M.G. is the co-founder and shareholder of QuEra Computing.

Peer review

Peer review information

Nature thanks Georg Bruun, Jae-yoon Choi and Zheng Zhu for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Schematic of experimental sequence.

A degenerate Fermi gas is loaded into a lattice formed by beams X and Y with a linear ramp of the lattice power. The lattice power is quenched to freeze tunneling. Radiofrequency Landau-Zener transfers are used in some shots to change the spin states on singly-occupied sites. Handing off from X + Y to \(\bar{X}+Y\) adiabatically doubles the unit cell, converting doubly-occupied sites to pairs of singly-occupied sites. Atoms are handed off to a separate imaging lattice, where a resonant laser is used in some shots to selectively remove one spin state.

Extended Data Fig. 2 Effect of potential gradients.

Numerical simulation (FTLM) of the nearest-neighbour non-normalized spin-spin and hole-spin-spin (doublon-spin-spin) correlation functions in a 4 × 3t − J cluster as a function of doping δ and gradient strength Δ, at fixed U/t = 30 and T/t = 0.5.

Extended Data Fig. 3 Numerical simulation of doublon-spin-spin correlation map at different densities.

We compute the connected doublon-spin-spin correlation function a, with DQMC at U/t = 5 and T/t = 0.5; b, with DQMC at U/t = 12 and T/t = 0.5; c, with NLCE at U/t = 38 and T/t = 0.5; d, with NLCE at U/t = 72 and T/t = 0.52729; e, with NLCE at U/t = 100 and T/t = 0.52729. f, Definition of bonds averaged together in NLCE simulations. Bonds beyond fifth nearest-neighbor are not computed and set to zero in the plot.

Extended Data Fig. 4 NLCE closest and second-closest doublon-spin-spin correlations.

Connected doublon-spin-spin correlator as a function of interaction strength, obtained from NLCE simulations at T/t = 0.7; a, at half-filling and b, at particle doping δ = 0.05. See Fig. 2 for a definition of the correlators.

Extended Data Fig. 5 Comparison of numerically computed three-point correlators as a function of doping and interaction strength.

a to d, Comparison between a, b, finite-temperature, T/t = 1 correlators and c, d, ground-state correlators between nearest neighbors, normalized according to Eqs. (3), (4), (6) and (7) (see Fig. 3d). a, c, doublon-spin-spin correlators \({C}_{{\rm{dss}}}^{(1)}\), showing an almost universal behavior above half-filling (δ > 0) for the various interaction strengths. b, d, hole-spin-spin correlators \({C}_{{\rm{hss}}}^{(1)}\). The U/t = 0 numerics are computed using Wick’s contraction, U/t = 12 using DQMC, U/t = 11, 38, 100 using NLCE, U/t =  using FTLM, and U/t = 5, 10, 20 using DMRG. e to h, Comparison between e, f, bare correlators \({C}_{{\rm{dss}},{\rm{hss}}}^{{\rm{bare}}}\) and g, h, non-normalized correlators \({C}_{{\rm{dss}},{\rm{hss}}}^{{\rm{tot}}}\) (as defined in Eq. (8) and Fig. 3c). The U/t = 0 numerics are computed using Wick’s contraction, U/t = 6, 12 using DQMC at T/t = 0.5, and U/t > 20 using FTLM. The errors in FTLM and DQMC are statistical while in DMRG they indicate the spatial variation of the correlators over the simulated system.

Extended Data Fig. 6 Ferromagnetic state in ground-state simulations.

a, DMRG simulation of the net total spin 〈S〉 normalized by maximal spin as a function of doping δ, at U/t = 20 and zero temperature, showing the emergence of long-range ferromagnetism with doublon doping. b, Spectrum of the Hubbard Hamiltonian on a triangular plaquette. Eigenenergies are shown as a function of interaction strength U/t for one particle dopant (left) and one hole dopant (right). Labels show the nature of the state at infinite interaction U/t = ± (S: singlet; T: triplet; H: one hole; D: one doublon) and its angular momentum  = 0, ±1 (see text for definitions). Colors indicate the sign and magnitude of the spin correlations.

Extended Data Fig. 7 Extended data on doping dependence of three-point correlators.

a, Doublon-spin-spin and b, hole-spin-spin correlation function on a triangular plaquette without normalization factor, see Eq. (8) for definition and Fig. 3 for details.

Extended Data Table 1 Summary of experimental datasets
Extended Data Table 2 Summary of the density resolved and spin-removal imaging technique
Extended Data Table 3 Trap curvature in a representative subset of datasets

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebrat, M., Xu, M., Kendrick, L.H. et al. Observation of Nagaoka polarons in a Fermi–Hubbard quantum simulator. Nature 629, 317–322 (2024). https://doi.org/10.1038/s41586-024-07272-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07272-9

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing