Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A magnetar giant flare in the nearby starburst galaxy M82

Abstract

Magnetar giant flares are rare explosive events releasing up to 1047 erg in gamma rays in less than 1 second from young neutron stars with magnetic fields up to 1015−16 G (refs. 1,2). Only three such flares have been seen from magnetars in our Galaxy3,4 and in the Large Magellanic Cloud5 in roughly 50 years. This small sample can be enlarged by the discovery of extragalactic events, as for a fraction of a second giant flares reach luminosities above 1046 erg s−1, which makes them visible up to a few tens of megaparsecs. However, at these distances they are difficult to distinguish from short gamma-ray bursts (GRBs); much more distant and energetic (1050−53 erg) events, originating in compact binary mergers6. A few short GRBs have been proposed7,8,9,10,11, with different amounts of confidence, as candidate giant magnetar flares in nearby galaxies. Here we report observations of GRB 231115A, positionally coincident with the starburst galaxy M82 (ref. 12). Its spectral properties, along with the length of the burst, the limits on its X-ray and optical counterparts obtained within a few hours, and the lack of a gravitational wave signal, unambiguously qualify this burst as a giant flare from a magnetar in M82.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Optical image of M82.
Fig. 2: Light curves of GRB 231115A.
Fig. 3: Comparison between GRB 231115A and the 2004 giant flare from SGR 1806–20.

Similar content being viewed by others

Data availability

The data of the INTEGRAL, XMM-Newton and Swift satellites are publicly available in the respective online archives (https://www.isdc.unige.ch/integral/archive, https://www.cosmos.esa.int/web/xmm-newton/xsa, https://swift.gsfc.nasa.gov/archive/). Optical data are available upon request.

Code availability

The software used for the data analysis is public and can be retrieved at https://www.cosmos.esa.int/web/xmm-newton/sas, https://www.isdc.unige.ch/integral/analysis#Software, https://heasarc.gsfc.nasa.gov/xanadu/xspec/.

References

  1. Mereghetti, S. The strongest cosmic magnets: soft gamma-ray repeaters and anomalous X-ray pulsars. Astron. Astrophys. Rev. 15, 225–287 (2008).

    Article  ADS  Google Scholar 

  2. Kaspi, V. M. & Beloborodov, A. M. Magnetars. Ann. Rev. Astron. Astrophys. 55, 261–301 (2017).

    Article  ADS  CAS  Google Scholar 

  3. Hurley, K. et al. A giant periodic flare from the soft γ-ray repeater SGR1900+14. Nature 397, 41–43 (1999).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  4. Palmer, D. M. et al. A giant γ-ray flare from the magnetar SGR 1806-20. Nature 434, 1107–1109 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Mazets, E. P., Golentskii, S. V., Ilinskii, V. N., Aptekar, R. L. & Guryan, I. A. Observations of a flaring X-ray pulsar in Dorado. Nature 282, 587–589 (1979).

    Article  ADS  Google Scholar 

  6. D’Avanzo, P. Short gamma-ray bursts: a review. J. High Energy Astrophys. 7, 73–80 (2015).

    Article  ADS  Google Scholar 

  7. Frederiks, D. D. et al. On the possibility of identifying the short hard burst GRB 051103 with a giant flare from a soft gamma repeater in the M81 group of galaxies. Astron. Lett. 33, 19–24 (2007).

    Article  ADS  CAS  Google Scholar 

  8. Mazets, E. P. et al. A giant flare from a soft gamma repeater in the Andromeda Galaxy (M31). Astrophys. J. 680, 545–549 (2008).

    Article  ADS  Google Scholar 

  9. Svinkin, D. et al. A bright γ-ray flare interpreted as a giant magnetar flare in NGC 253. Nature 589, 211–213 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Burns, E. et al. Identification of a local sample of gamma-ray bursts consistent with a Magnetar Giant Flare origin. Astrophys. J. Lett. 907, L28–L37 (2021).

    Article  ADS  CAS  Google Scholar 

  11. Trigg, A. C. et al. GRB 180128A: a second Magnetar Giant Flare candidate from the Sculptor Galaxy. Preprint at https://arxiv.org/abs/2311.09362 (2023).

  12. Förster Schreiber, N. M., Genzel, R., Lutz, D. & Sternberg, A. The nature of starburst activity in M82. Astrophys. J. 599, 193–217 (2003).

    Article  ADS  Google Scholar 

  13. Mereghetti, S. et al. GRB 231115A: a short hard GRB detected by IBAS, positionally coincident with M82. GRB Coord. Netw. 35037, 1 (2023).

    Google Scholar 

  14. Dalessi, S., Roberts, O. J., Veres, P., Meegan, C. & Fermi Gamma-ray Burst Monitor Team. GRB 231115A: Fermi observations of a probable Magnetar Giant Flare from M82. GRB Coord. Netw. 35044, 1 (2023).

    Google Scholar 

  15. Cheung, C. C. et al. GRB 231115A (short): glowbug gamma-ray detection. GRB Coord. Netw. 35045, 1 (2023).

    Google Scholar 

  16. Xue, W. C., Xiong, S. L., Li, X. B., Li, C. K. & Insight-HXMT Team. GRB 231115A: insight-HXMT/HE detection. GRB Coord. Netw. 35060, 1 (2023).

    Google Scholar 

  17. Frederiks, D. et al. Konus-wind detection of GRB 231115A (a probable Magnetar Giant Flare from M82). GRB Coord. Netw. 35062, 1 (2023).

    Google Scholar 

  18. Wang, Y. et al. Study the origin of GRB 231115A, short gamma-ray burst or magnetar giant flare? Preprint at https://arxiv.org/abs/2312.02848 (2023).

  19. Mereghetti, S., Götz, D., Borkowski, J., Walter, R. & Pedersen, H. The INTEGRAL burst alert system. Astron. Astrophys. 411, L291–L297 (2003).

    Article  ADS  CAS  Google Scholar 

  20. Ubertini, P. et al. IBIS: the imager on-board INTEGRAL. Astron. Astrophys. 411, L131–L139 (2003).

    Article  ADS  CAS  Google Scholar 

  21. Burns, E. GRB 231115A: significance of INTEGRAL localization alignment with M82. GRB Coord. Netw. 35038, 1 (2023).

    Google Scholar 

  22. Lebrun, F. et al. ISGRI: the INTEGRAL soft gamma-ray imager. Astron. Astrophys. 411, L141–L148 (2003).

    Article  ADS  CAS  Google Scholar 

  23. Labanti, C. et al. The IBIS-PICsIT detector onboard INTEGRAL. Astron. Astrophys. 411, L149–L152 (2003).

    Article  ADS  Google Scholar 

  24. Freedman, W. L. et al. The Hubble Space Telescope Extragalactic Distance Scale Key Project. I. The discovery of cepheids and a new distance to M81. Astrophys. J. 427, 628–655 (1994).

    Article  ADS  Google Scholar 

  25. Osborne, J. P. et al. GRB 231115A: Swift-XRT and Swift-UVOT observations. GRB Coord. Netw. 35064, 1 (2023).

    Google Scholar 

  26. Rigoselli, M., Pacholski, D. P., Mereghetti, S., Salvaterra, R. & Campana, S. GRB 231115A: XMM-Newton observation. GRB Coordinates Network 35175, 1 (2023).

    Google Scholar 

  27. Sakamoto, T. & Gehrels, N. Indication of two classes in the swift short gamma-ray bursts from the XRT X-ray afterglow light curves. In Proc. AIP Conference on Gamma-ray Burst: Sixth Huntsville Symposium Vol. 1133 (eds Meegan, C. et al.) 112–114 (AIP, 2009).

  28. Coti Zelati, F., Rea, N., Pons, J. A., Campana, S. & Esposito, P. Systematic study of magnetar outbursts. Mon. Not. R. Astron. Soc. 474, 961–1017 (2018).

    Article  ADS  Google Scholar 

  29. Abbott, B. P. et al. Multi-messenger observations of a binary neutron star merger. Astrophys. J. Lett. 848, L12–L70 (2017).

    Article  ADS  Google Scholar 

  30. Ligo Scientific Collaboration, VIRGO Collaboration, and Kagra Collaboration. GRB 231115A: non-detection in low-latency of gravitational waves with LIGO/Virgo/KAGRA. GRB Coord. Netw. 35049, 1 (2023).

    Google Scholar 

  31. Leroy, A. K. et al. A z = 0 Multiwavelength galaxy synthesis. I. A WISE and GALEX atlas of local galaxies. Astrophys. J. Supp. 244, 24–62 (2019).

    Article  ADS  CAS  Google Scholar 

  32. Duncan, R. C. & Thompson, C. Formation of very strongly magnetized neutron stars: implications for gamma-ray bursts. Astrophys. J. Lett. 392, L9–L13 (1992).

    Article  ADS  CAS  Google Scholar 

  33. Cehula, J., Thompson, T. A. & Metzger, B. D. Dynamics of baryon ejection in magnetar giant flares: implications for radio afterglows, r-process nucleosynthesis, and fast radio bursts. Mon. Not. R. Astron. Soc. 528, 5323–5345 (2024).

  34. Frederiks, D. D. et al. Giant flare in SGR 1806-20 and its Compton reflection from the Moon. Astron. Lett. 33, 1–18 (2007).

    Article  ADS  CAS  Google Scholar 

  35. Mereghetti, S. et al. The first giant flare from SGR 1806-20: observations using the anticoincidence shield of the spectrometer on INTEGRAL. Astrophys. J. Lett. 624, L105–L108 (2005).

    Article  ADS  CAS  Google Scholar 

  36. Goldwurm, A. et al. The INTEGRAL/IBIS scientific data analysis. Astron. Astrophys. 411, L223–L229 (2003).

    Article  ADS  CAS  Google Scholar 

  37. Arnaud, K. A. XSPEC: the first ten years. In Proc. Astronomical Data Analysis Software and Systems V Vol. 101 (eds Jacoby, G. H. & Barnes, J.) 17–20 (ASP, 1996).

  38. Mereghetti, S., Topinka, M., Rigoselli, M. & Götz, D. INTEGRAL limits on past high-energy activity from FRB 20200120E in M81. Astrophys. J. Lett. 921, L3–L7 (2021).

    Article  ADS  CAS  Google Scholar 

  39. HI4PI Collaboration. HI4PI: a full-sky H I survey based on EBHIS and GASS. Astron. Astrophys. 594, A116 (2016).

    Article  Google Scholar 

  40. Strüder, L. et al. The European Photon Imaging Camera on XMM-Newton: the pn-CCD camera. Astron. Astrophys. 365, L18–L26 (2001).

    Article  ADS  Google Scholar 

  41. Turner, M. J. L. et al. The European Photon Imaging Camera on XMM-Newton: the MOS cameras. Astron. Astrophys. 365, L27–L35 (2001).

    Article  ADS  Google Scholar 

  42. Gabriel, C. et al. The XMM-Newton SAS—distributed development and maintenance of a large science analysis system: a critical analysis. In Proc. Astronomical Data Analysis Software and Systems (ADASS) XIII Vol. 314 (eds Ochsenbein, F. et al.) 759–763 (ASP, 2004).

  43. European Space Agency. Dealing with epic out-of-time (OOT) events. XMM-Newton www.cosmos.esa.int/web/xmm-newton/sas-thread-epic-oot (2023).

  44. NASA. Swift GRBS, look up a burst. Goddard Space Flight Center http://swift.gsfc.nasa.gov/archive/grb_table (2023).

  45. Mulgrew, P. Pan-STARRS1 data archive. Space Telescope Science Institute http://outerspace.stsci.edu/display/PANSTARRS/ (2022).

  46. SDSS. SDSS-V: pioneering panoptic spectroscopy www.sdss.org (2022).

  47. Becker, A. HOTPANTS: high order transform of PSF and template subtraction. ascl:1504.004 (Astrophysics Source Code Library, 2015).

  48. Stetson, P. B. DAOPHOT: a computer program for crowded-field stellar photometry. Pub. Ast. Soc. Pac. 99, 191–222 (1987).

    Article  ADS  Google Scholar 

  49. Karpov, S. STDPipe: simple transient detection pipeline. ascl:2112.006 (Astrophysics Source Code Library, 2021).

  50. Bradley, L. et al. astropy/photutils: 1.1.0. Zenodo https://doi.org/10.5281/zenodo.4624996 (2021).

  51. astropy, photoutils v.1.11.0. GitHub http://github.com/astropy/photutils (2024).

  52. Rossi, A. et al. A comparison between short GRB afterglows and kilonova AT2017gfo: shedding light on kilonovae properties. Mon. Not. R. Astron. Soc. 493, 3379–3397 (2020).

    Article  ADS  CAS  Google Scholar 

  53. Bulla, M. POSSIS: predicting spectra, light curves, and polarization for multidimensional models of supernovae and kilonovae. Mon. Not. R. Astron. Soc. 489, 5037–5045 (2019).

    Article  ADS  Google Scholar 

  54. Ferro, M. et al. A search for the afterglows, kilonovae, and host galaxies of two short GRBs: GRB 211106A and GRB 211227A. Astron. Astrophys. 678, A142–A162 (2023).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the ESA Mission Scientists J.-U. Ness and N. Schartel for approving and quickly implementing the INTEGRAL and XMM-Newton ToO observations. This work is based on observations with INTEGRAL and XMM-Newton, ESA missions with instruments and science data centres funded by ESA member states, and with the participation of the Russian Federation and the United States. It is also based on observations made with the Italian TNG operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. This paper includes optical data taken with the Schmidt 67/92 telescope operated by INAF Osservatorio Astronomico di Padova (Mount Ekar, Asiago). This work received financial support from INAF through the Magnetars Large Program Grant (Principal Investigator S.M.) and from the GRAWITA Large Program Grant (Principal Investigator P.D.A.). J.C.R., A.B., S.M. and P.U. acknowledge financial support from ASI under contract no. 2019-35-HH.0. F.O. acknowledges support from MIUR, PRIN 2020 (grant no. 2020KB33TP) ‘Multimessenger astronomy in the Einstein Telescope Era’ (METE). J.C.R. acknowledges support from the European Union’s Horizon 2020 Programme under the AHEAD2020 project (grant agreement no. 871158). P.D.A. and S.C. acknowledge funding from the Italian Space Agency, contract ASI/INAF no. I/004/11/4.

Author information

Authors and Affiliations

Authors

Contributions

All authors reviewed the manuscript and contributed to the source interpretation. S.M. coordinated the work and the interpretation of the results, contributed to the analysis of the INTEGRAL and XMM-Newton data, and wrote most of the manuscript. R.S. and E.A. contributed to write the main part of the paper. D.P.P. and J.C.R. carried out most of the INTEGRAL data analysis. D.G., C.F., E.B., L.D. and V.S. routinely contribute to the operation of the IBAS software and participated to the near real time INTEGRAL analysis. P.D.A. coordinated the analysis of the optical data from Italian telescopes. M.R. analysed the XMM-Newton data and contributed to the INTEGRAL spectral analysis. S.C. analysed the Swift data. M.T. contributed to the software for the burst search in archival data. D.T., W.T., D.S. and C.A. coordinated the observation and the analysis of the optical data taken at OHP. L.T. analysed the optical data taken with the Schmidt 67/92 telescope in Asiago under the Large Program ‘Search and characterization of optical counterparts of GW triggers’ (P.I. Tomasella). A.R. and E.C. triggered, reduced and analysed the observations at the Asiago Schmidt telescope. R.B. and M.F. provided the short GRB afterglows and kilonovae observed and simulated optical light curves.

Corresponding author

Correspondence to Sandro Mereghetti.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Eric Burns and David Palmer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 EPIC-pn images of M82.

The exposure-corrected images refer to the 0.3−2 keV (a) and 2−10 keV (b) energy ranges. The 90% c.l. error circle of GRB 231115A has a radius of 2 arcmin.

Extended Data Fig. 2 Maps of count rate upper limits.

The figure gives 3-σ upper limits on the 2−10 keV count rates of the EPIC-MOS1 (a), EPIC-MOS2 (b) and EPIC-pn (c) cameras. The 90% c.l. error circle of GRB 231115A has a radius of 2 arcmin.

Extended Data Fig. 3 Maps of flux upper limits.

The figure gives 3-σ upper limits on the fluxes in the 2−10 keV (a) and 0.3−10 keV (b) energy range, obtained by combining the three maps of Extended Data Fig. 2. The 90% c.l. error circle of GRB 231115A has a radius of 2 arcmin.

Extended Data Fig. 4 X-ray light curves of short GRB afterglows.

The Swift/XRT (black square) and XMM-Newton/EPIC (black diamond) 3-σ upper limits of GRB 231115A are indicated.

Extended Data Fig. 5 Optical light curves of kilonovae.

The r-band light curves of AT2017gro and of the faintest red kilonova (simulated with the POSSIS code) are shown with dashed and solid lines, respectively, assuming the M82 distance (3.6 Mpc). The magnitude 3-σ upper limits obtained for a position inside (outside) the M82 galaxy are shown as blue (red) arrows.

Extended Data Fig. 6 Optical light curves of short GRB afterglows.

The observed light curves are shown in a, while b shows the light curves of those GRBs which have a measure of redshift, rescaled to the M82 distance (3.6 Mpc). The 3-σ upper limits obtained for a position inside (outside) the M82 galaxy are shown as blue (red) arrows.

Extended Data Table 1 Results of spectral fits of GRB 231115A
Extended Data Table 2 Log of optical observations of GRB 231115A

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mereghetti, S., Rigoselli, M., Salvaterra, R. et al. A magnetar giant flare in the nearby starburst galaxy M82. Nature 629, 58–61 (2024). https://doi.org/10.1038/s41586-024-07285-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07285-4

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing