Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regioselective hydroformylation of propene catalysed by rhodium-zeolite

Abstract

Hydroformylation is an industrial process for the production of aldehydes from alkenes1,2. Regioselective hydroformylation of propene to high-value n-butanal is particularly important, owing to a wide range of bulk applications of n-butanal in the manufacture of various necessities in human daily life3. Supported rhodium (Rh) hydroformylation catalysts, which often excel in catalyst recyclability, ease of separation and adaptability for continuous-flow processes, have been greatly exploited4. Nonetheless, they usually consist of rotationally flexible and sterically unconstrained Rh hydride dicarbonyl centres, only affording limited regioselectivity to n-butanal5,6,7,8. Here we show that proper encapsulation of Rh species comprising Rh(I)-gem-dicarbonyl centres within a MEL zeolite framework allows the breaking of the above model. The optimized catalyst exhibits more than 99% regioselectivity to n-butanal and more than 99% selectivity to aldehydes at a product formation turnover frequency (TOF) of 6,500 h−1, surpassing the performance of all heterogeneous and most homogeneous catalysts developed so far. Our comprehensive studies show that the zeolite framework can act as a scaffold to steer the reaction pathway of the intermediates confined in the space between the zeolite framework and Rh centres towards the exclusive formation of n-butanal.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Industrial propene hydroformylation and our proposed heterogeneous Rh-zeolite system.
Fig. 2: Preparation and characterization of Rh@MEL and RhOD@MEL.
Fig. 3: Catalytic evaluation of RhOD@MEL-DMBT.
Fig. 4: In situ FT-IR study.
Fig. 5: Theoretical study of propene hydroformylation on [RhH(CO)2]@MEL.

Similar content being viewed by others

Data availability

The authors declare that all the data supporting the findings of this study are available within the paper and its Supplementary Information files and are also available from the corresponding author on reasonable request. Source data are provided with this paper.

References

  1. Pospech, J., Fleischer, I., Franke, R., Buchholz, S. & Beller, M. Alternative metals for homogeneous catalyzed hydroformylation reactions. Angew. Chem. Int. Edn 52, 2852–2872 (2013).

    Article  CAS  Google Scholar 

  2. Arnoldy, P. in Rhodium Catalyzed Hydroformylation (Van Leeuwen, P. W. N. M. & Claver, C.) 203–231 (Springer, 2000).

  3. Franke, R., Selent, D. & Borner, A. Applied hydroformylation. Chem. Rev. 112, 5675–5732 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Liu, B. et al. Heterogeneous hydroformylation of alkenes by Rh-based catalysts. Chem 8, 2630–2658 (2022).

    Article  CAS  Google Scholar 

  5. Shylesh, S. et al. In situ formation of Wilkinson-type hydroformylation catalysts: insights into the structure, stability, and kinetics of triphenylphosphine- and xantphos-modified Rh/SiO2. ACS Catal. 3, 348–357 (2013).

    Article  CAS  Google Scholar 

  6. Li, C. et al. Single atom dispersed Rh-biphephos&PPh3@porous organic copolymers: highly efficient catalysts for continuous fixed-bed hydroformylation of propene. Green Chem. 18, 2995–3005 (2016).

    Article  ADS  CAS  Google Scholar 

  7. Riisager, A. et al. Very stable and highly regioselective supported ionic‐liquid‐phase (SILP) catalysis: continuous‐flow fixed‐bed hydroformylation of propene. Angew. Chem. Int. Edn 44, 815–819 (2005).

    Article  CAS  Google Scholar 

  8. Srinivas, G. & Chuang, S. S. C. An in-situ infrared study of the formation of n- and iso-butyraldehyde from propylene hydroformylation on Rh/SiO2 and sulfided Rh/SiO2. J. Catal. 144, 131–147 (1993).

    Article  CAS  Google Scholar 

  9. Smit, B. & Maesen, T. L. Towards a molecular understanding of shape selectivity. Nature 451, 671–678 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Ren, L. et al. Designed copper-amine complex as an efficient template for one-pot synthesis of Cu-SSZ-13 zeolite with excellent activity for selective catalytic reduction of NOx by NH3. Chem. Commun. 47, 9789–9791 (2011).

    Article  CAS  Google Scholar 

  11. McClure, S. M., Lundwall, M. J. & Goodman, D. W. Planar oxide supported rhodium nanoparticles as model catalysts. Proc. Natl Acad. Sci. USA 108, 931–936 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Ro, I. et al. Bifunctional hydroformylation on heterogeneous Rh-WOx pair site catalysts. Nature 609, 287–292 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Yates, D. J. C., Murrell, L. L. & Prestridge, E. B. Ultradispersed rhodium rafts: their existence and topology. J. Catal. 57, 41–63 (1979).

    Article  CAS  Google Scholar 

  14. Qi, L. et al. Ethene hydroformylation catalyzed by rhodium dispersed with zinc or cobalt in silanol nests of dealuminated zeolite beta. J. Am. Chem. Soc. 145, 2911–2929 (2023).

    Article  CAS  PubMed  Google Scholar 

  15. Matsubu, J. C., Yang, V. N. & Christopher, P. Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity. J. Am. Chem. Soc. 137, 3076–3084 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Goellner, J. F., Gates, B. C., Vayssilov, G. N. & Rösch, N. Structure and bonding of a site-isolated transition metal complex: rhodium dicarbonyl in highly dealuminated zeolite Y. J. Am. Chem. Soc. 122, 8056–8066 (2000).

    Article  CAS  Google Scholar 

  17. Choi, M., Wu, Z. & Iglesia, E. Mercaptosilane-assisted synthesis of metal clusters within zeolites and catalytic consequences of encapsulation. J. Am. Chem. Soc. 132, 9129–9137 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Goel, S., Wu, Z., Zones, S. I. & Iglesia, E. Synthesis and catalytic properties of metal clusters encapsulated within small-pore (SOD, GIS, ANA) zeolites. J. Am. Chem. Soc. 134, 17688–17695 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Li, C. et al. Xantphos doped Rh/POPs-PPh3 catalyst for highly selective long-chain olefins hydroformylation: chemical and DFT insights into Rh location and the roles of Xantphos and PPh3. J. Catal. 353, 123–132 (2017).

    Article  CAS  Google Scholar 

  20. Pruett, R. L. & Smith, J. A. Low-pressure system for producing normal aldehydes by hydroformylation of α-olefins. J. Org. Chem. 34, 327–330 (1969).

    Article  CAS  Google Scholar 

  21. Zheng, Y. et al. Boosting the hydroformylation activity of a Rh/CeO2 single-atom catalyst by tuning surface deficiencies. ACS Catal. 13, 7243–7255 (2023).

    Article  CAS  Google Scholar 

  22. Farpón, M. G. et al. Rhodium single-atom catalyst design through oxide support modulation for selective gas-phase ethylene hydroformylation. Angew. Chem. Int. Edn 135, e202214048 (2022).

    Article  Google Scholar 

  23. Aireddy, D. R. & Ding, K. Heterolytic dissociation of H2 in heterogeneous catalysis. ACS Catal. 12, 4707–4723 (2022).

    Article  CAS  Google Scholar 

  24. Lu, J., Aydin, C., Browning, N. D. & Gates, B. C. Hydrogen activation and metal hydride formation trigger cluster formation from supported iridium complexes. J. Am. Chem. Soc. 134, 5022–5025 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Torrent, M., Sola, M. & Frenking, G. Theoretical studies of some transition-metal-mediated reactions of industrial and synthetic importance. Chem. Rev. 100, 439–494 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Liu, L. et al. Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis. Nat. Mater. 18, 866–873 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Sun, Q. et al. Zeolite‐encaged single‐atom rhodium catalysts: highly‐efficient hydrogen generation and shape‐selective tandem hydrogenation of nitroarenes. Angew. Chem. Int. Edn 58, 18570–18576 (2019).

    Article  CAS  Google Scholar 

  28. Kaftan, A. et al. Supported homogeneous catalyst makes its own liquid phase. J. Catal. 321, 32–38 (2015).

    Article  CAS  Google Scholar 

  29. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Rice, C. A., Worley, S. D., Curtis, C. W., Guin, J. A. & Tarrer, A. R. The oxidation state of dispersed Rh on Al2O3. J. Chem. Phys. 74, 6487–6497 (1981).

    Article  ADS  CAS  Google Scholar 

  31. Marinkovic, N. S., Sasaki, K. & Adzic, R. R. Determination of single- and multi-component nanoparticle sizes by X-ray absorption spectroscopy. J. Electrochem. Soc. 165, J3222–J3230 (2018).

    Article  CAS  Google Scholar 

  32. Jentys, A. Estimation of mean size and shape of small metal particles by EXAFS. Phys. Chem. Chem. Phys. 1, 4059–4063 (1999).

    Article  CAS  Google Scholar 

  33. Cao, L. et al. Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2. Nature 565, 631–635 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Cho, H. J., Kim, D., Li, J., Su, D. & Xu, B. Zeolite-encapsulated Pt nanoparticles for tandem catalysis. J. Am. Chem. Soc. 140, 13514–13520 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  ADS  CAS  Google Scholar 

  36. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  37. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104–154123 (2010).

    Article  ADS  PubMed  Google Scholar 

  39. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comp. Chem. 32, 1456–1465 (2011).

    Article  CAS  Google Scholar 

  40. Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  ADS  CAS  Google Scholar 

  41. Kresse, G. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  ADS  CAS  Google Scholar 

  42. Teter, M. P., Payne, M. C. & Allan, D. C. Solution of Schrödinger’s equation for large systems. Phys. Rev. B 40, 12255–12263 (1989).

    Article  ADS  CAS  Google Scholar 

  43. Bylander, D. M., Kleinman, L. & Lee, S. Self-consistent calculations of the energy bands and bonding properties of B12C3. Phys. Rev. B 42, 1394–1403 (1990).

    Article  ADS  CAS  Google Scholar 

  44. Methfessel, M. & Paxton, A. T. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 40, 3616–3621 (1989).

    Article  ADS  CAS  Google Scholar 

  45. Henkelman, G. & Jónsson, H. A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J. Chem. Phys. 111, 7010–7022 (1999).

    Article  ADS  CAS  Google Scholar 

  46. Heyden, A., Bell, A. T. & Keil, F. J. Efficient methods for finding transition states in chemical reactions: comparison of improved dimer method and partitioned rational function optimization method. J. Chem. Phys. 123, 224101–224115 (2005).

    Article  ADS  PubMed  Google Scholar 

  47. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  ADS  CAS  Google Scholar 

  48. Henkelman, G. & Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000).

    Article  ADS  CAS  Google Scholar 

  49. Szécsényi, Á. et al. Breaking linear scaling relationships with secondary interactions in confined space: A case study of methane oxidation by Fe/ZSM-5 zeolite. ACS Catal. 9, 9276–9284 (2019).

    Article  Google Scholar 

  50. Jacobs, I., de Bruin, B. & Reek, J. N. Comparison of the full catalytic cycle of hydroformylation mediated by mono‐ and bis‐ligated triphenylphosphine–rhodium complexes by using DFT calculations. ChemCatChem 7, 1708–1718 (2015).

    Article  CAS  Google Scholar 

  51. Kozuch, S. & Shaik, S. How to conceptualize catalytic cycles? The energetic span model. Acc. Chem. Res. 44, 101–110 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Farkas, A., Hess, F. & Over, H. Experiment-based kinetic Monte Carlo simulations: CO oxidation over RuO2(110). J. Phys. Chem. C 116, 581–591 (2012).

    Article  CAS  Google Scholar 

  53. Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Article  PubMed  Google Scholar 

  54. Frisch, M. J. et al. Gaussian 16, Revision A.03 (Gaussian, Inc., 2016).

  55. Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. 38, 3098–3010 (1988).

    Article  ADS  CAS  Google Scholar 

  56. Lee, C., Yang, W. & Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).

    Article  ADS  CAS  Google Scholar 

  57. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article  ADS  CAS  Google Scholar 

  58. Mehio, N., Dai, S. & Jiang, D. Quantum mechanical basis for kinetic diameters of small gaseous molecules. J. Phys. Chem. A 118, 1150–1154 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (nos. 21972161 and 22172186), Major Science and Technology Project of Ordos City (no. 2022EEDSKJZDZX001), Autonomous Research Project of State Key Laboratory of Coal Conversion (no. 2022BWZ009), Inner Mongolia Key Research and Development Program (no. 2023YFHH0009), Institute of Coal Chemistry, Chinese Academy of Sciences and Synfuels China Technology Co., Ltd. We also acknowledge the Shanghai Synchrotron Radiation Facility (SSRF) for providing the facility for XAS measurements and the Centre for High-resolution Electron Microscopy (CħEM) for the TEM tests.

Author information

Authors and Affiliations

Authors

Contributions

Z.C., Y.Y. and H.W. conceived the project and designed the study. X.Zha. and T.Y. conducted synthesis work, catalytic tests and other characterizations. J.Y. performed the theoretical calculations. H.H., F.S., Y.W. and Q.Z. conducted the structural characterizations. X.S., M.D., W.F., J.W., Y.S., X.Zho., K.W. and Y.L. helped with the data analysis. Z.C. and H.W. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Hongliu Wan, Yong Yang or Zhi Cao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–37 and Supplementary Tables 1–8.

Supplementary Data

The structural files and corresponding total energy of theoretical models.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Yan, T., Hou, H. et al. Regioselective hydroformylation of propene catalysed by rhodium-zeolite. Nature (2024). https://doi.org/10.1038/s41586-024-07342-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41586-024-07342-y

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing