Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Analysis and benchmarking of small and large genomic variants across tandem repeats

Abstract

Tandem repeats (TRs) are highly polymorphic in the human genome, have thousands of associated molecular traits and are linked to over 60 disease phenotypes. However, they are often excluded from at-scale studies because of challenges with variant calling and representation, as well as a lack of a genome-wide standard. Here, to promote the development of TR methods, we created a catalog of TR regions and explored TR properties across 86 haplotype-resolved long-read human assemblies. We curated variants from the Genome in a Bottle (GIAB) HG002 individual to create a TR dataset to benchmark existing and future TR analysis methods. We also present an improved variant comparison method that handles variants greater than 4 bp in length and varying allelic representation. The 8.1% of the genome covered by the TR catalog holds ~24.9% of variants per individual, including 124,728 small and 17,988 large variants for the GIAB HG002 ‘truth-set’ TR benchmark. We demonstrate the utility of this pipeline across short-read and long-read technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sequence contexts of TR catalog.
Fig. 2: Location, sequence and length properties of the benchmark’s TR regions.
Fig. 3: Benchmarking pipeline performance.
Fig. 4: Diversity of TRs over 156 haplotypes at CODIS and known pathogenic loci.

Similar content being viewed by others

Data availability

The TR catalog (version 1.2) can be found at https://zenodo.org/records/8387564 (ref. 74). Supplementary Table 4 holds the paths to the input assemblies used to create the pVCF. The pVCF can be found at https://zenodo.org/records/6975244 (ref. 76). The TandemRepeat benchmark is hosted at https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/AshkenazimTrio/HG002_NA24385_son/TandemRepeats_v1.0 (ref. 83). Comparison VCFs from TR callers HipSTR, GangSTR, Medaka and TRGT and whole-genome VCFs from DeepVariant, BioGraph and Sniffles are available at https://zenodo.org/records/10724503 (ref. 84).

Code availability

All code created for this project is available under an open-source license. Analysis scripts for this project are hosted at https://github.com/ACEnglish/adotto/ (ref. 85). Truvari can be found at https://github.com/ACEnglish/truvari/ (ref. 86). Laytr can be found at https://github.com/ACEnglish/laytr/ (ref. 87). A lightweight version of the TR catalog creation process is available as a snakemake pipeline at https://github.com/nate-d-olson/adotto-smk (ref. 88). The overlap permutation tool regioners can be downloaded from https://github.com/ACEnglish/regioners (ref. 89).

References

  1. Levinson, G. & Gutman, G. A. Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol. Biol. Evol. 4, 203–221 (1987).

    CAS  PubMed  Google Scholar 

  2. Fan, H. & Chu, J.-Y. A brief review of short tandem repeat mutation. Genom. Proteom. Bioinform. 5, 7–14 (2007).

    Article  CAS  Google Scholar 

  3. Shriver, M. D., Jin, L., Chakraborty, R. & Boerwinkle, E. VNTR allele frequency distributions under the stepwise mutation model: a computer simulation approach. Genetics 134, 983–993 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wright, J. M. Mutation at VNTRs: are minisatellites the evolutionary progeny of microsatellites? Genome 37, 345–347 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Willems, T. et al. The landscape of human STR variation. Genome Res. 24, 1894–1904 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ren, J., Gu, B. & Chaisson, M. J. P. vamos: variable-number tandem repeats annotation using efficient motif sets. Genome Biol. 24, 175 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Noyes, M. D. et al. Familial long-read sequencing increases yield of de novo mutations. Am. J. Hum. Genet. 109, 631–646 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. DeJesus-Hernandez, M. et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245–256 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Depienne, C. & Mandel, J.-L. 30 years of repeat expansion disorders: what have we learned and what are the remaining challenges? Am. J. Hum. Genet. 108, 764–785 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mirceta, M., Shum, N., Schmidt, M. H. M. & Pearson, C. E. Fragile sites, chromosomal lesions, tandem repeats, and disease. Front. Genet. 13, 985975 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hannan, A. J. Repeat DNA expands our understanding of autism spectrum disorder. Nature 589, 200–202 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Hannan, A. J. Tandem repeats mediating genetic plasticity in health and disease. Nat. Rev. Genet. 19, 286–298 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Stanley, U. et al. Forensic DNA profiling: autosomal short tandem repeat as a prominent marker in crime investigation. Malays. J. Med. Sci. 27, 22–35 (2020).

    Google Scholar 

  14. Hall, C. L. et al. Accurate profiling of forensic autosomal STRs using the Oxford Nanopore Technologies MinION device. Forensic Sci. Int. Genet. 56, 102629 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Warner, J. P. et al. A general method for the detection of large CAG repeat expansions by fluorescent PCR. J. Med. Genet. 33, 1022–1026 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jeffreys, A. J., Wilson, V. & Thein, S. L. Hypervariable ‘minisatellite’ regions in human DNA. Nature 314, 67–73 (1985).

    Article  CAS  PubMed  Google Scholar 

  17. Dolzhenko, E. et al. ExpansionHunter: a sequence-graph based tool to analyze variation in short tandem repeat regions. Bioinformatics 35, 4754–4756 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Willems, T. et al. Genome-wide profiling of heritable and de novo STR variations. Nat. Methods 14, 590–592 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mousavi, N., Shleizer-Burko, S., Yanicky, R. & Gymrek, M. Profiling the genome-wide landscape of tandem repeat expansions. Nucleic Acids Res. 47, e90 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dolzhenko, E. et al. Characterization and visualization of tandem repeats at genome scale. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-02057-3 (2024).

    Article  PubMed  Google Scholar 

  21. Chiu, R., Rajan-Babu, I.-S., Friedman, J. M. & Birol, I. Straglr: discovering and genotyping tandem repeat expansions using whole genome long-read sequences. Genome Biol. 22, 224 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nurk, S. et al. The complete sequence of a human genome. Science 376, 44–53 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Aganezov, S. et al. A complete reference genome improves analysis of human genetic variation. Science 376, eabl3533 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rhie, A. et al. The complete sequence of a human Y chromosome. Nature 621, 344–354 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Olson, N. D. et al. Variant calling and benchmarking in an era of complete human genome sequences. Nat. Rev. Genet. 24, 464–483 (2023).

    Article  CAS  PubMed  Google Scholar 

  26. Majidian, S., Agustinho, D. P., Chin, C.-S., Sedlazeck, F. J. & Mahmoud, M. Genomic variant benchmark: if you cannot measure it, you cannot improve it. Genome Biol. 24, 221 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wagner, J. et al. Benchmarking challenging small variants with linked and long reads. Cell Genom. 2, 100128 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zook, J. M. et al. A robust benchmark for detection of germline large deletions and insertions. Nat. Biotechnol. 38, 1347–1355 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wagner, J. et al. Curated variation benchmarks for challenging medically relevant autosomal genes. Nat. Biotechnol. 40, 672–680 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. English, A. C., Menon, V. K., Gibbs, R. A., Metcalf, G. A. & Sedlazeck, F. J. Truvari: refined structural variant comparison preserves allelic diversity. Genome Biol. 23, 271 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang, J. & Chaisson, M. J. P. TT-Mars: structural variants assessment based on haplotype-resolved assemblies. Genome Biol. 23, 110 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Audano, P. A. & Beck, C. R. Small polymorphisms are a source of ancestral bias in structural variant breakpoint placement. Genome Res. 34, 7–19 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Fu, Y., Mahmoud, M., Muraliraman, V. V., Sedlazeck, F. J. & Treangen, T. J. Vulcan: improved long-read mapping and structural variant calling via dual-mode alignment. GigaScience 10, giab063 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gelfand, Y., Rodriguez, A. & Benson, G. TRDB—the Tandem Repeats Database. Nucleic Acids Res. 35, D80–D87 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Halman, A., Dolzhenko, E. & Oshlack, A. STRipy: a graphical application for enhanced genotyping of pathogenic short tandem repeats in sequencing data. Hum. Mutat. 43, 859–868 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kent, W. J. et al. The human genome browser at UCSC. Genome Res. 12, 996–1006 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Saini, S., Mitra, I., Mousavi, N., Fotsing, S. F. & Gymrek, M. A reference haplotype panel for genome-wide imputation of short tandem repeats. Nat. Commun. 9, 4397 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Benson, G. Tandem Repeats Finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Smit, A., Hubley, R. & Green, P. RepeatMasker. http://www.repeatmasker.org (2013).

  40. Wlodzimierz, P., Hong, M. & Henderson, I. R. TRASH: tandem repeat annotation and structural hierarchy. Bioinformatics 39, btad308 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Novák, P., Neumann, P. & Macas, J. Global analysis of repetitive DNA from unassembled sequence reads using RepeatExplorer2. Nat. Protoc. 15, 3745–3776 (2020).

    Article  PubMed  Google Scholar 

  42. Delucchi, M., Näf, P., Bliven, S. & Anisimova, M. TRAL 2.0: tandem repeat detection with circular profile hidden Markov models and evolutionary aligner. Front. Bioinform. 1, 691865 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  43. El-Sawy, M. & Deininger, P. Tandem insertions of Alu elements. Cytogenet. Genome Res. 108, 58–62 (2004).

    Article  Google Scholar 

  44. Moretti, T. R. et al. Population data on the expanded CODIS core STR loci for eleven populations of significance for forensic DNA analyses in the United States. Forensic Sci. Int. Genet. 25, 175–181 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Collins, R. L. et al. A structural variation reference for medical and population genetics. Nature 581, 444–451 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stevanovski, I. et al. Comprehensive genetic diagnosis of tandem repeat expansion disorders with programmable targeted nanopore sequencing. Sci. Adv. 8, eabm5386 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pellerin, D. et al. Deep intronic FGF14 GAA repeat expansion in late-onset cerebellar ataxia. N. Engl. J. Med. 388, 128–141 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Tan, D. et al. CAG repeat expansion in THAP11 is associated with a novel spinocerebellar ataxia. Mov. Disord. 38, 1282–1293 (2023).

    Article  CAS  PubMed  Google Scholar 

  49. Mukamel, R. E. et al. Protein-coding repeat polymorphisms strongly shape diverse human phenotypes. Science 373, 1499–1505 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu, Z. et al. Inconsistent genotyping call at DYS389 locus and implications for interpretation. Int. J. Legal Med. 132, 1043–1048 (2018).

    Article  PubMed  Google Scholar 

  51. White, P. S., Tatum, O. L., Deaven, L. L. & Longmire, J. L. New, male-specific microsatellite markers from the human Y chromosome. Genomics 57, 433–437 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Vinces, M. D., Legendre, M., Caldara, M., Hagihara, M. & Verstrepen, K. J. Unstable tandem repeats in promoters confer transcriptional evolvability. Science 324, 1213–1216 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sulovari, A. et al. Human-specific tandem repeat expansion and differential gene expression during primate evolution. Proc. Natl Acad. Sci. USA 116, 23243–23253 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Annear, D. J. et al. Abundancy of polymorphic CGG repeats in the human genome suggest a broad involvement in neurological disease. Sci. Rep. 11, 2515 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liao, W.-W. et al. A draft human pangenome reference. Nature 617, 312–324 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ebert, P. et al. Haplotype-resolved diverse human genomes and integrated analysis of structural variation. Science 372, eabf7117 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Garg, S. et al. Chromosome-scale, haplotype-resolved assembly of human genomes. Nat. Biotechnol. 39, 309–312 (2021).

    Article  CAS  PubMed  Google Scholar 

  58. Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18, 170–175 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jarvis, E. D. et al. Semi-automated assembly of high-quality diploid human reference genomes. Nature 611, 519–531 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dunn, T. & Narayanasamy, S. vcfdist: accurately benchmarking phased small variant calls in human genomes. Nat. Commun. 14, 8149 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cleary, J. G. et al. Comparing variant call files for performance benchmarking of next-generation sequencing variant calling pipelines. Preprint at bioRxiv https://doi.org/10.1101/023754 (2015).

  63. Tan, A., Abecasis, G. R. & Kang, H. M. Unified representation of genetic variants. Bioinformatics 31, 2202–2204 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Marco-Sola, S., Moure, J. C., Moreto, M. & Espinosa, A. Fast gap-affine pairwise alignment using the wavefront algorithm. Bioinformatics 37, btaa777 (2020).

    Google Scholar 

  65. Sedlazeck, F. J. et al. Accurate detection of complex structural variations using single-molecule sequencing. Nat. Methods 15, 461–468 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Park, J., Kaufman, E., Valdmanis, P. N. & Bafna, V. TRviz: a Python library for decomposing and visualizing tandem repeat sequences. Bioinform. Adv. 3, vbad058 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Krause, A. et al. Junctophilin 3 (JPH3) expansion mutations causing Huntington disease like 2 (HDL2) are common in South African patients with African ancestry and a Huntington disease phenotype. Am. J. Med. Genet. B 168, 573–585 (2015).

    Article  CAS  Google Scholar 

  68. Wieben, E. D. et al. A common trinucleotide repeat expansion within the transcription factor 4 (TCF4, E2-2) gene predicts Fuchs corneal dystrophy. PLoS ONE 7, e49083 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jam, H. Z. et al. A deep population reference panel of tandem repeat variation. Nat. Commun. 14, 6711 (2023).

    Article  Google Scholar 

  70. Bakhtiari, M., Shleizer-Burko, S., Gymrek, M., Bansal, V. & Bafna, V. Targeted genotyping of variable number tandem repeats with adVNTR. Genome Res. 28, 1709–1719 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sonay, T. B. et al. Tandem repeat variation in human and great ape populations and its impact on gene expression divergence. Genome Res. 25, 1591–1599 (2015).

    Article  CAS  Google Scholar 

  72. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Howe, K. L. et al. Ensembl 2021. Nucleic Acids Res. 49, D884–D891 (2020).

    Article  PubMed Central  Google Scholar 

  74. English, A. Project Adotto tandem-repeat regions and annotations. Zenodo 10.5281/zenodo.8387564 (2022).

  75. Danecek, P. et al. Twelve years of SAMtools and BCFtools. GigaScience 10, giab008 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  76. English, A. Project Adotto whole-genome variants. Zenodo 10.5281/zenodo.6975244 (2022).

  77. Li, H. et al. A synthetic-diploid benchmark for accurate variant-calling evaluation. Nat. Methods 15, 595–597 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Chin, C.-S. et al. A diploid assembly-based benchmark for variants in the major histocompatibility complex. Nat. Commun. 11, 4794 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wootton, J. C. & Federhen, S. Statistics of local complexity in amino acid sequences and sequence databases. Comput. Chem. 17, 149–163 (1993).

    Article  CAS  Google Scholar 

  80. Šošić, M. & Šikić, M. Edlib: a C/C++ library for fast, exact sequence alignment using edit distance. Bioinformatics 33, btw753 (2016).

    Google Scholar 

  81. Bonfield, J. K. et al. HTSlib: C library for reading/writing high-throughput sequencing data. GigaScience 10, giab007 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. English, A. et al. GIAB TandemRepeats benchmark v1.0. https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/AshkenazimTrio/HG002_NA24385_son/TandemRepeats_v1.0 (2023).

  84. English, A. et al. GIAB TR comparison VCFs. Zenodo 10.5281/zenodo.10724503 (2024).

  85. English, A. et al. Working space for the GIAB TR benchmarking project. GitHub https://github.com/ACEnglish/adotto (2023).

  86. English, A. Structural variant toolkit for VCFs. GitHub https://github.com/ACEnglish/truvari (2023).

  87. English, A. et al. Library for variant benchmarking stratification. GitHub https://github.com/ACEnglish/laytr (2023).

  88. Olson, N. A snakemake based pipeline to build Adotto TR databases. GitHub https://github.com/nate-d-olson/adotto-smk (2023).

  89. English, A. A rust implementation of regioneR for interval overlap permutation testing. GitHub https://github.com/ACEnglish/regioners (2023).

Download references

Acknowledgements

We would like to thank the GIAB community for constant support. We thank J. McDaniel for very helpful comments on the paper, M. Wykes and S. Nurk for assistance in processing Medaka results and V. Bafna for contributions to the TR catalog. A.C.E. and F.J.S. were supported by HHSN268201800002I, U01AG058589, 1U01HG011758-01 and 1UG3NS132105-01. H.Z.J. was supported by NIH/NHGRI R01HG010149. M.J.P.C. and B.G. were supported by R01HG011649 and 5U24HG007497, respectively. J.P. was supported in part by HG010149. Certain commercial equipment, instruments or materials are identified to adequately specify the experimental conditions or reported results. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the equipment, instruments or materials identified are necessarily the best available for the purpose.

Author information

Authors and Affiliations

Authors

Contributions

A.C.E. performed data analysis and software development. E.D., H.Z.J., N.D.O., S.K.M., J.P., B.G., J.W., M.G. and M.J.P.C. contributed to testing and data processing. A.C.E., J.M.Z. and F.J.S. designed the study. A.C.E., E.D., H.Z.J., N.D.O., S.K.M., J.P., W.D.C., M.A.E., B.G., J.W., M.G., M.J.P.C., J.M.Z. and F.J.S. reviewed and edited the paper.

Corresponding authors

Correspondence to Adam C. English or Fritz J. Sedlazeck.

Ethics declarations

Competing interests

F.J.S. receives research support from Illumina, Genentech, PacBio and ONT. E.D. and M.A.E. are employees and shareholders of PacBio. S.K.M. is an employee and shareholder of ONT. W.D.C. has received free consumables from ONT. The other authors declare no competing interests.

Peer review

Peer review information

Nature Biotechnology thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7, Methods and Tables 1–3, 6 and 8–13.

Reporting Summary

Supplementary Tables

Supplementary Tables 4 (assembly sources), 5 (assembly statistics), 7 (replicate tiers) and 14 (pathogenic and phenotypic TRs).

Supplementary Material 1

Laytr HTML report for TRGT.

Supplementary Material 2

Laytr HTML report for Sniffles.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

English, A.C., Dolzhenko, E., Ziaei Jam, H. et al. Analysis and benchmarking of small and large genomic variants across tandem repeats. Nat Biotechnol (2024). https://doi.org/10.1038/s41587-024-02225-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41587-024-02225-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing