Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Differential selection of yield and quality traits has shaped genomic signatures of cowpea domestication and improvement

Abstract

Cowpeas (tropical legumes) are important in ensuring food and nutritional security in developing countries, especially in sub-Saharan Africa. Herein, we report two high-quality genome assemblies of grain and vegetable cowpeas and we re-sequenced 344 accessions to characterize the genomic variations landscape. We identified 39 loci for ten important agronomic traits and more than 541 potential loci that underwent selection during cowpea domestication and improvement. In particular, the synchronous selections of the pod-shattering loci and their neighboring stress-relevant loci probably led to the enhancement of pod-shattering resistance and the compromise of stress resistance during the domestication from grain to vegetable cowpeas. Moreover, differential selections on multiple loci associated with pod length, grain number per pod, seed weight, pod and seed soluble sugars, and seed crude proteins shaped the yield and quality diversity in cowpeas. Our findings provide genomic insights into cowpea domestication and improvement footprints, enabling further genome-informed cultivar improvement of cowpeas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: High-quality genome assembly of vegetable cowpea G98 and grain cowpea G323.
Fig. 2: Phylogenetic analysis and genome structure variations of cowpeas.
Fig. 3: Population structure and genomic diversity of 344 cowpea accessions.
Fig. 4: Genome-wide distribution of selective sweeps in cowpea and GWAS for four different traits.
Fig. 5: Identification of PS-related genes in cowpeas.
Fig. 6: Yield traits-related gene mining in cowpea.
Fig. 7: Quality traits-related gene mining in cowpea.
Fig. 8: Proposed model of cowpea domestication and improvement.

Similar content being viewed by others

Data availability

The genome assemblies of G98 (accession number JBALLC000000000) and G323 (accession number JAZDUG000000000) and the re-sequencing data of 344 accessions have been deposited in the NCBI Sequence Read Archive under the BioProject accession number PRJNA889224; the RNA-seq data for gene annotation have been deposited in the NCBI Sequence Read Archive under BioProject accession number PRJNA954189; the transcriptome data of three cowpea accessions have been deposited in the NCBI Sequence Read Archive under BioProject accession number PRJNA970477. The genotype and phenotype data can be accessed in figshare (https://doi.org/10.6084/m9.figshare.21646556)141.

Code availability

All codes and tools used in this study are described in Methods and Reporting Summary.

References

  1. Singh, B. B. Cowpea: The Food Legume of the 21st Century (Crop Science Society of America, 2014).

    Book  Google Scholar 

  2. Timko, M. P & Singh, B. in Plant Genetics and Genomics: Crops and Models (eds Moore, P. H. & Ming, R.) 227–258 (Springer, 2008).

  3. Pasquet, R. S. & Padulosi, S. Genus Vigna and cowpea (Vigna unguiculata (L.) Walp.) taxonomy: current status and prospects. In Proc. 5th World Cowpea Conference (eds Boukara, O. et al.) 66–87 (International Institute of Tropical Agriculture, 2012).

  4. Herniter, I. A., Muñoz-Amatriaín, M. & Close, T. J. Genetic, textual, and archeological evidence of the historical global spread of cowpea (Vigna unguiculata (L.) Walp.). Legume Sci. 2, e57 (2020).

    Article  Google Scholar 

  5. Timko, M. P., Ehlers, J. D. & Roberts, P. A. in Genome Mapping and Molecular Breeding in Plants, Vol. 3 (ed. Kole, C.) 49–67 (Springer, 2007).

  6. National Research Council. Lost Crops of Africa, Vol. 2 (The National Academies Press, 2006).

  7. Som, M. G. & Hazra, P. in Genetic Improvement of Vegetable Crops (eds Kalloo G. & Bergh, B. O.) 339–354 (Elsevier, 1993).

  8. Kongjaimun, A. et al. The genetics of domestication of yardlong bean, Vigna unguiculata (L.) Walp. ssp. unguiculata cv.-gr. sesquipedalis. Ann. Bot. 109, 1185–1200 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lo, S. et al. Identification of QTL controlling domestication-related traits in cowpea (Vigna unguiculata L. Walp). Sci. Rep. 8, 6261 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lo, S. et al. A genome-wide association and meta-analysis reveal regions associated with seed size in cowpea [Vigna unguiculata (L.) Walp]. Theor. Appl. Genet. 132, 3079–3087 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Suanum, W. et al. Co-localization of QTLs for pod fiber content and pod shattering in F2 and backcross populations between yardlong bean and wild cowpea. Mol. Breed. 36, 80 (2016).

    Article  Google Scholar 

  12. Andargie, M., Pasquet, R. S., Gowda, B. S., Muluvi, G. M. & Timko, M. P. Molecular mapping of QTLs for domestication-related traits in cowpea (V. unguiculata (L.) Walp.). Euphytica 200, 401–412 (2014).

    Article  Google Scholar 

  13. Herniter, I. A., Muñoz-Amatriaín, M., Lo, S., Guo, Y.-N. & Close, T. J. Identification of candidate genes controlling black seed coat and pod tip color in cowpea (Vigna unguiculata [L.] Walp). G3 8, 3347–3355 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kongjaimun, A. et al. QTL mapping of pod tenderness and total soluble solid in yardlong bean [Vigna unguiculata (L.) Walp. subsp. unguiculata cv.-gr. sesquipedalis]. Euphytica 189, 217–223 (2013).

    Article  CAS  Google Scholar 

  15. Xu, P. et al. Genomic regions, cellular components and gene regulatory basis underlying pod length variations in cowpea (V. unguiculata L. Walp). Plant Biotechnol. J. 15, 547–557 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Wu, X. B., Cortés, A. J. & Blair, M. W. Genetic differentiation of grain, fodder and pod vegetable type cowpeas (Vigna unguiculata L.) identified through single nucleotide polymorphisms from genotyping-by-sequencing. Mol. Hortic. 2, 8 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lonardi, S. et al. The genome of cowpea (Vigna unguiculata [L.] Walp.). Plant J. 98, 767–782 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang, T. et al. Improved pea reference genome and pan-genome highlight genomic features and evolutionary characteristics. Nat. Genet. 54, 1553–1563 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pan, L. et al. Comprehensive genomic analyses of Vigna unguiculata provide insights into population differentiation and the genetic basis of key agricultural traits. Plant Biotechnol. J. 21, 1426–1439 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Guan, J. T. et al. Genomic analyses of rice bean landraces reveal adaptation and yield related loci to accelerate breeding. Nat. Commun. 13, 5707 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rennie, E. A. et al. Identification of a sphingolipid α-glucuronosyltransferase that is essential for pollen function in Arabidopsis. Plant Cell 26, 3314–3325 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen, L. Y. et al. The Arabidopsis alkaline ceramidase TOD1 is a key turgor pressure regulator in plant cells. Nat. Commun. 6, 6030 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Haslam, T. M. & Feussner, I. Diversity in sphingolipid metabolism across land plants. J. Exp. Bot. 73, 2785–2798 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Liu, J. et al. Natural variation in ARF18 gene simultaneously affects seed weight and silique length in polyploid rapeseed. Proc. Natl Acad. Sci. USA 112, E5123–E5132 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shi, L. L. et al. A CACTA-like transposable element in the upstream region of BnaA9.CYP78A9 acts as an enhancer to increase silique length and seed weight in rapeseed. Plant J. 98, 524–539 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Abbo, S. et al. Plant domestication versus crop evolution: a conceptual framework for cereals and grain legumes. Trends Plant Sci. 19, 351–360 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Yang, J. H. et al. Genomic signatures of vegetable and oilseed allopolyploid Brassica juncea and genetic loci controlling the accumulation of glucosinolates. Plant Biotechnol. J. 19, 2619–2628 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kang, L. et al. Genomic insights into the origin, domestication and diversification of Brassica juncea. Nat. Genet. 53, 1392–1402 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lo, S. et al. Genetic, anatomical, and environmental patterns related to pod shattering resistance in domesticated cowpea [Vigna unguiculata (L.) Walp]. J. Exp. Bot. 72, 6219–6229 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Taylor-Teeples, M. et al. An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature 517, 571–575 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, D. M. et al. An uncanonical CCCH-tandem zinc-finger protein represses secondary wall synthesis and controls mechanical strength in rice. Mol. Plant. 11, 163–174 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Huang, L. C., Tan, H. Y., Zhang, C. Q., Li, Q. F. & Liu, Q. Q. Starch biosynthesis in cereal endosperms: an updated review over the last decade. Plant Commun. 2, 100237 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tian, H. et al. Arabidopsis NPCC6/NaKR1 is a phloem mobile metal binding protein necessary for phloem function and root meristem maintenance. Plant Cell 22, 3963–3979 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Su, S. et al. Gibberellins orchestrate panicle architecture mediated by DELLA-KNOX signalling in rice. Plant Biotechnol. J. 19, 2304–2318 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Léran, S. et al. A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants. Trends Plant Sci. 19, 5–9 (2014).

    Article  PubMed  Google Scholar 

  36. Corratgé-Faillie, C. & Lacombe, B. Substrate (un)specificity of Arabidopsis NRT1/PTR FAMILY (NPF) proteins. J. Exp. Bot. 68, 3107–3113 (2017).

    Article  PubMed  Google Scholar 

  37. Kanneganti, V. & Gupta, A. K. Wall associated kinases from plants—an overview. Physiol. Mol. Biol. Plants 14, 109–118 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kohorn, B. D. et al. An Arabidopsis cell wall-associated kinase required for invertase activity and cell growth. Plant J. 46, 307–316 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Barry, C. S., Llop-Tous, M. I. & Grierson, D. The regulation of 1-aminocyclopropane-1-carboxylic acid synthase gene expression during the transition from system-1 to system-2 ethylene synthesis in tomato. Plant Physiol. 123, 979–986 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kaga, A., Isemura, T., Tomooka, N. & Vaughan, D. A. The genetics of domestication of the azuki bean (Vigna angularis). Genetics 178, 1013–1036 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Robles, P. & Quesada, V. Research progress in the molecular functions of plant mTERF proteins. Cells 10, 205 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schwarz, D. S. & Blower, M. D. The endoplasmic reticulum: structure, function and response to cellular signaling. Cell. Mol. Life Sci. 73, 79–94 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Zang, J. Z., Kriechbaumer, V. & Wang, P. W. Plant cytoskeletons and the endoplasmic reticulum network organization. J. Plant Physiol. 264, 153473 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Bouchenak, M. & Lamri-Senhadji, M. Nutritional quality of legumes, and their role in cardiometabolic risk prevention: a review. J. Med. Food 16, 185–198 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, M. et al. Progress in soybean functional genomics over the past decade. Plant Biotechnol. J. 20, 256–282 (2022).

    Article  CAS  PubMed  Google Scholar 

  46. Chen, L. Q. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468, 527–532 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yang, J. L. et al. SWEET11 and 15 as key players in seed filling in rice. N. Phytol. 218, 604–615 (2018).

    Article  CAS  Google Scholar 

  48. Sosso, D. et al. Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport. Nat. Genet. 47, 1489–1493 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Wang, S. D. et al. Simultaneous changes in seed size, oil content and protein content driven by selection of SWEET homologues during soybean domestication. Natl Sci. Rev. 7, 1776–1786 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Duan, Z. B. et al. Natural allelic variation of GmST05 controlling seed size and quality in soybean. Plant Biotechnol. J. 20, 1807–1818 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Paniagua, C. et al. Antisense down-regulation of the strawberry β-galactosidase gene FaβGal4 increases cell wall galactose levels and reduces fruit softening. J. Exp. Bot. 67, 619–631 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Ma, L., Xue, N., Fu, X. Y., Zhang, H. S. & Li, G. Arabidopsis thaliana FAR-RED ELONGATED HYPOCOTYLS3 (FHY3) and FAR-RED-IMPAIRED RESPONSE1 (FAR1) modulate starch synthesis in response to light and sugar. N. Phytol. 213, 1682–1696 (2017).

    Article  CAS  Google Scholar 

  53. Zhong, R. Q. & Ye, Z. H. The SAC domain-containing protein gene family in Arabidopsis. Plant Physiol. 132, 544–555 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ilsley, J. L., Sudol, M. & Winder, S. J. The WW domain: linking cell signalling to the membrane cytoskeleton. Cell. Signal. 14, 183–189 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Yao, H. Y. & Xue, H. W. Phosphatidic acid plays key roles regulating plant development and stress responses. J. Integr. Plant Biol. 60, 851–863 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Zhang, H., Lu, Y., Zhao, Y. & Zhou, D. X. OsSRT1 is involved in rice seed development through regulation of starch metabolism gene expression. Plant Sci. 248, 28–36 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Parker, T. A., Lo, S. & Gepts, P. Pod shattering in grain legumes: emerging genetic and environment-related patterns. Plant Cell 33, 179–199 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Xu, P. et al. Natural variation and gene regulatory basis for the responses of asparagus beans to soil drought. Front. Plant Sci. 6, 891 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Santos, J. R. P., Ndeve, A. D., Huynh, B. L., Matthews, W. C. & Roberts, P. A. QTL mapping and transcriptome analysis of cowpea reveals candidate genes for root-knot nematode resistance. PLoS ONE 13, e0189185 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Huynh, B. L. et al. Genetic mapping and legume synteny of aphid resistance in African cowpea (Vigna unguiculata L. Walp.) grown in California. Mol. Breed. 35, 36 (2015).

    Article  PubMed  Google Scholar 

  61. Huynh, B. L. et al. A major QTL corresponding to the Rk locus for resistance to root‑knot nematodes in cowpea (Vigna unguiculata L. Walp.). Theor. Appl. Genet. 129, 87–95 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Muchero, W., Ehlers, J. D., Close, T. J. & Roberts, P. A. Mapping QTL for drought stress-induced premature senescence and maturity in cowpea [Vigna unguiculata (L.) Walp.]. Theor. Appl. Genet. 118, 849–863 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Muchero, W., Ehlers, J. D. & Roberts, P. A. Restriction site polymorphism-based candidate gene mapping for seedling drought tolerance in cowpea [Vigna unguiculata (L.) Walp.]. Theor. Appl. Genet. 120, 509–518 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Muchero, W., Ehlers, J. D., Close, T. J. & Roberts, P. A. Genic SNP markers and legume synteny reveal candidate genes underlying QTL for Macrophomina phaseolina resistance and maturity in cowpea [Vigna unguiculata (L) Walp.]. BMC Genom. 12, 8 (2011).

  65. Pottorff, M. et al. Genetic and physical mapping of candidate genes for resistance to Fusarium oxysporum f. sp. tracheiphilum race 3 in cowpea [Vigna unguiculata (L.) Walp.]. PLoS ONE 7, e41600 (2012).

  66. Pottorff, M. et al. Identification of candidate genes and molecular markers for heat-induced brown discoloration of seed coats in cowpea [Vigna unguiculata (L.) Walp.]. BMC Genom. 15, 328 (2014).

    Article  Google Scholar 

  67. Ravelombola, W., Shi, A. & Huynh, B. L. Loci discovery, network-guided approach, and genomic prediction for drought tolerance index in a multi-parent advanced generation intercross (MAGIC) cowpea population. Hortic. Res. 8, 24 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wu, X. Y. et al. Association mapping for fusarium wilt resistance in Chinese asparagus bean germplasm. Plant Genome 8, 1–6 (2015).

    Article  Google Scholar 

  69. Wu, X. Y. et al. SNP marker-based genetic mapping of rust resistance gene in the vegetable cowpea landrace ZN016. Legum. Res. 41, 222–225 (2018).

    Google Scholar 

  70. Heng, T., Kaga, A., Chen, X. & Somta, P. Two tightly linked genes coding for NAD-dependent malic enzyme and dynamin-related protein are associated with resistance to Cercospora leaf spot disease in cowpea (Vigna unguiculata (L.) Walp.). Theor. Appl. Genet. 133, 395–407 (2020).

    Article  CAS  PubMed  Google Scholar 

  71. Geater, C. W. & Fehr, W. R. Association of total sugar content with other seed traits of diverse soybean cultivars. Crop Sci. 40, 1552–1555 (2000).

    Article  CAS  Google Scholar 

  72. Yoshikawa, Y., Chen, P. Y., Zhang, B., Scaboo, A. & Orazaly, M. Evaluation of seed chemical quality traits and sensory properties of natto soybean. Food Chem. 153, 186–192 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Bu, Y. P. et al. Conditional and unconditional QTL analyses of seed hardness in vegetable soybean (Glycine max L. Merr.). Euphytica 214, 237 (2018).

    Article  Google Scholar 

  74. Murray, M. G. & Thompson, W. F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8, 4321–4325 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722–736 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cheng, H. Y., Concepcion, G. T., Feng, X. W., Zhang, H. W. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18, 170–175 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Burton, J. N. et al. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat. Biotechnol. 31, 1119–1125 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rhie, A., Walenz, B. P., Koren, S. & Phillippy, A. M. Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biol. 21, 245 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Flynn, J. M. et al. RepeatModeler2 for automated genomic discovery of transposable element families. Proc. Natl Acad. Sci. USA 117, 9451–9457 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jurka, J. et al. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet. Genome Res. 110, 462–467 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Neumann, P., Novák, P., Hoštáková, N. & Macas, J. Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification. Mob. DNA 10, 1 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Wheeler, T. J. et al. Dfam: a database of repetitive DNA based on profile hidden Markov models. Nucleic Acids Res. 41, D70–D82 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Ellinghaus, D., Kurtz, S. & Willhoeft, U. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinform. 9, 18 (2008).

    Article  Google Scholar 

  84. Xu, Z. & Wang, H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 35, W265–W268 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Tarailo‐Graovac, M. & Chen, N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinformatics 4, 4.10.1–4.10.14 (2009).

    Google Scholar 

  86. Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Beier, S., Thiel, T., Münch, T., Scholz, U. & Mascher, M. MISA-web: a web server for microsatellite prediction. Bioinformatics 33, 2583–2585 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Stanke, M., Diekhans, M., Baertsch, R. & Haussler, D. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 24, 637–644 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Korf, I. Gene finding in novel genomes. BMC Bioinform. 5, 59 (2004).

    Article  Google Scholar 

  90. Keilwagen, J. et al. Using intron position conservation for homology-based gene prediction. Nucleic Acids Res. 44, E89 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tang, S., Lomsadze, A. & Borodovsky, M. Identification of protein coding regions in RNA transcripts. Nucleic Acids Res. 43, E78 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol. 9, R7 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Haas, B. J. et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 31, 5654–5666 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lowe, T. M. & Eddy, S. R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Loman, T. A Novel Method for Predicting Ribosomal RNA Genes in Prokaryotic Genomes. MSc thesis, Lund Univ. (2017).

  98. Griffiths-Jones, S. et al. Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res. 33, D121–D124 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Griffiths-Jones, S., Grocock, R. J., van Dongen, S., Bateman, A. & Enright, A. J. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 34, D140–D144 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. She, R., Chu, J. S., Wang, K., Pei, J. & Chen, N. GenBlastA: enabling BLAST to identify homologous gene sequences. Genome Res. 19, 143–149 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Birney, E., Clamp, M. & Durbin, R. GeneWise and genomewise. Genome Res. 14, 988–995 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Song, J. M. et al. Two gap-free reference genomes and a global view of the centromere architecture in rice. Mol. Plant 14, 1757–1767 (2021).

    Article  CAS  PubMed  Google Scholar 

  103. Swarbreck, D. et al. The Arabidopsis Information Resource (TAIR): gene structure and function annotation. Nucleic Acids Res. 36, D1009–D1014 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Kang, Y. J. et al. Genome sequence of mungbean and insights into evolution within Vigna species. Nat. Commun. 5, 5443 (2014).

    Article  CAS  PubMed  Google Scholar 

  105. Yang, K. et al. Genome sequencing of adzuki bean (Vigna angularis) provides insight into high starch and low fat accumulation and domestication. Proc. Natl Acad. Sci. USA 112, 13213–13218 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Schmutz, J. et al. A reference genome for common bean and genome-wide analysis of dual domestications. Nat. Genet. 46, 707–713 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Garcia, T. et al. Comprehensive genomic resources related to domestication and crop improvement traits in Lima bean. Nat. Commun. 12, 702 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Valliyodan, B. et al. Construction and comparison of three reference-quality genome assemblies for soybean. Plant J. 100, 1066–1082 (2019).

    Article  CAS  PubMed  Google Scholar 

  109. Varshney, R. K. et al. Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat. Biotechnol. 30, 83–89 (2012).

    Article  CAS  Google Scholar 

  110. Qin, S. et al. A draft genome for Spatholobus suberectus. Sci. Data 6, 113 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Kamal, N. et al. Insights into the evolution of symbiosis gene copy number and distribution from a chromosome-scale Lotus japonicus Gifu genome sequence. DNA Res. 27, dass015 (2020).

    Article  Google Scholar 

  112. Kreplak, J. et al. A reference genome for pea provides insight into legume genome evolution. Nat. Genet. 51, 1411–1422 (2019).

    Article  CAS  PubMed  Google Scholar 

  113. De Vega, J. J. et al. Red clover (Trifolium pratense L.) draft genome provides a platform for trait improvement. Sci. Rep. 5, 17394 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Young, N. D. et al. The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480, 520–524 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Varshney, R. K. et al. Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat. Biotechnol. 31, 240–246 (2013).

    Article  CAS  PubMed  Google Scholar 

  116. Hane, J. K. et al. A comprehensive draft genome sequence for lupin (Lupinus angustifolius), an emerging health food: insights into plant–microbe interactions and legume evolution. Plant Biotechnol. J. 15, 318–330 (2017).

    Article  CAS  PubMed  Google Scholar 

  117. Bertioli, D. J. et al. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat. Genet. 48, 438–446 (2016).

    Article  CAS  PubMed  Google Scholar 

  118. Griesmann, M. et al. Phylogenomics reveals multiple losses of nitrogen-fixing root nodule symbiosis. Science 361, eaat1743 (2018).

    Article  PubMed  Google Scholar 

  119. Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    Article  CAS  PubMed  Google Scholar 

  121. Yang, Z. H. PAML: a program package for phylogenetic analysis by maximum likelihood. Bioinformatics 13, 555–556 (1997).

    Article  CAS  Google Scholar 

  122. Yu, G. C., Wang, L. G., Han, Y. Y. & He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Marçais, G. et al. MUMmer4: a fast and versatile genome alignment system. PLoS Comput. Biol. 14, e1005944 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Wang, K., Li, M. Y. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Danecek, P. et al. Twelve years of SAMtools and BCFtools. GigaScience 10, giab008 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  127. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6, 80–92 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kumar, S. et al. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Zhang, C., Dong, S. S., Xu, J. Y., He, W. M. & Yang, T. L. PopLDdecay: a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics 35, 1786–1788 (2019).

    Article  CAS  PubMed  Google Scholar 

  133. Varelis, P. Food Chemistry and Analysis (Elsevier, 2016).

  134. Kang, H. M. et al. Variance component model to account for sample structure in genome-wide association studies. Nat. Genet. 42, 348–354 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).

    Google Scholar 

  136. Chen, H., Patterson, N. & Reich, D. Population differentiation as a test for selective sweeps. Genome Res. 20, 393–402 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Shiroguchi, K., Jia, T. Z., Sims, P. A. & Xie, X. S. Digital RNA sequencing minimizes sequence-dependent bias and amplification noise with optimized single-molecule barcodes. Proc. Natl Acad. Sci. USA 109, 1347–1352 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kivioja, T. et al. Counting absolute numbers of molecules using unique molecular identifiers. Nat. Methods 9, 72–74 (2012).

    Article  CAS  Google Scholar 

  139. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. EdgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  140. Wu, X. Y. et al. Development of a core set of single nucleotide polymorphism markers for genetic diversity analysis and cultivar fingerprinting in cowpea. Legume Sci. 3, e93 (2021).

    Article  CAS  Google Scholar 

  141. Wu, Xi. & Li, G. Differential selection of yield and quality traits has shaped genomic signatures of cowpea domestication and improvement. figshare https://doi.org/10.6084/m9.figshare.21646556 (2024).

Download references

Acknowledgements

We thank J. Yang from Zhejiang University for valuable comments on the paper. This work was supported by the Key R&D Program of Zhejiang Province (2022C02016 to Xinyi Wu), the Major Science and Technology Project of Plant Breeding in Zhejiang Province (2021C02065 to B.W.), Key R&D Program of Guangdong Province (2020B020220002 to Xinyi Wu), the Crop Germplasm Identification Project of General Seed Management Station of Agriculture and Rural Affairs Department in Zhejiang Province (2022R23T60D01 to Xinyi Wu), the Fundamental Research Funds for the Central Universities (+226-2022-00100 to M.Z.) and Biological Breeding Project of ZAAS Program for Transdisciplinary Research (to Xinyi Wu).

Author information

Authors and Affiliations

Authors

Contributions

Xinyi Wu, M.Z. and G.L. conceived and designed the project. Xinyi Wu, Z.H. and N.L. performed genome assembly and assessment, comparative genome analysis and other bioinformatic analyses. Xinyi Wu, B.W., Xiaohua Wu, Y.W., J.W., Z.L., Y.S. and W.D. performed field cultivation and phenotype investigation in Hangzhou, and Y.Z. and Y.Y. performed field cultivation and phenotype investigation in Guangzhou. M.L., J.D. and J.W. worked on quality testing and GWAS data analysis. J.D. performed gene expression analysis and gene function validation on the bi-parental population. Xinyi Wu and Z.H. wrote the paper, M.Z. revised the paper and all authors read and approved the paper.

Corresponding authors

Correspondence to Mingfang Zhang or Guojing Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks Caroline Belser and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10.

Reporting Summary

Peer Review File

Supplementary Tables

The contents of each supplementary table are provided in the first sheet.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Hu, Z., Zhang, Y. et al. Differential selection of yield and quality traits has shaped genomic signatures of cowpea domestication and improvement. Nat Genet (2024). https://doi.org/10.1038/s41588-024-01722-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41588-024-01722-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing