Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multi-ancestry genome-wide association study of kidney cancer identifies 63 susceptibility regions

Abstract

Here, in a multi-ancestry genome-wide association study meta-analysis of kidney cancer (29,020 cases and 835,670 controls), we identified 63 susceptibility regions (50 novel) containing 108 independent risk loci. In analyses stratified by subtype, 52 regions (78 loci) were associated with clear cell renal cell carcinoma (RCC) and 6 regions (7 loci) with papillary RCC. Notably, we report a variant common in African ancestry individuals (rs7629500) in the 3′ untranslated region of VHL, nearly tripling clear cell RCC risk (odds ratio 2.72, 95% confidence interval 2.23–3.30). In cis-expression quantitative trait locus analyses, 48 variants from 34 regions point toward 83 candidate genes. Enrichment of hypoxia-inducible factor-binding sites underscores the importance of hypoxia-related mechanisms in kidney cancer. Our results advance understanding of the genetic architecture of kidney cancer, provide clues for functional investigation and enable generation of a validated polygenic risk score with an estimated area under the curve of 0.65 (0.74 including risk factors) among European ancestry individuals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Manhattan plot for multi-ancestry GWAS of kidney cancer (29,020 cases and 835,670 controls) using fixed-effects meta-analysis model.
Fig. 2: Locus 3p25.3.
Fig. 3: Locus 7q32.1.
Fig. 4: Performance of the PRS.

Similar content being viewed by others

Data availability

All GWAS summary statistics are available on dbGaP (phs003505.v1.p1) and GWAS Catalog (GCST90320043–GCST90320065). Individual-level data from the new NCI-3 scan are available on dbGaP (phs003505.v1.p1). Data from previously published scans are also available on dbGaP (NCI-1, phs000351.v1.p1; NCI-2, phs001736.v2.p1; USKC, phs000863.v1.p1; IARC-2, phs001271.v1.p1; MDA and MDA-OncoArray, phs003505.v1.p1). The individual-level data from the IARC-1 and UK scans have not been deposited in dbGaP or any other data archive site given decisions by the institutional ethics review boards for these projects. The data from these scans are available upon reasonable request through internal processes unique to each institution. Such requests can be made in writing to the principal investigators (IARC: P. Brennan, pbrennan@iarc.fr and UK: R.H., richard.houlston@icr.ac.uk); the time frame from request to receipt of data is approximately 4–6 weeks. The UK Biobank analysis was conducted via application number 86140 (https://www.ukbiobank.ac.uk/). The Finnish biobank data included in FinnGen can be accessed via Fingenious services at https://site.fingenious.fi/en/ (ref. 80) managed by FINBB. Finnish Health register data can be applied for via Findata at https://findata.fi/en/data/ (ref. 81). The full GWAS results of the BBJ are available via the website of the Japanese ENcyclopedia of GEnetic Associations by Riken (JENGER) at http://jenger.riken.jp/en/ (ref. 82; case–control GWAS no. 156). Function annotation enrichment was performed with the annotation data provided via the GARFIELD package at https://www.ebi.ac.uk/birney-srv/GARFIELD/ (ref. 83). Position weight matrices for transcription factor-binding sites as cataloged in HOCOMOCO were provided along with the motifbreakR R package, in the associated MotifDb database. ChIP-Seq data reported by Schmid et al.18 are publicly available through the Gene Expression Omnibus (GEO) database under the accession codes: GSE120885 (HIF-1α, HIF-2α and HIF-1β ChIP-seq in RCC4 cells) and GSE67237 (HIF-2α and HIF-1β ChIP-seq in 786-O cells). Epigenomic charting data (H3K27ac peaks) generated by Nassar et al.37 are publicly available through GEO database under accession code GSE188486; the sample attributes are mentioned in Supplementary Table 1 of the corresponding paper. GTEx v8 and TCGA data can be accessed via GTEx and Genomic Data Commons at https://gtexportal.org/home/ (ref. 84) and https://portal.gdc.cancer.gov/repository (ref. 85), respectively. Additionally, eQTLs for TCGA were queried via the PancanQTL database at http://gong_lab.hzau.edu.cn/PancanQTL/ (ref. 86).

Code availability

Code used in performing the liftover of summary statistics and fixed-effects GWAS meta-analyses (version 2022-12-23) is available via GitHub at https://github.com/freeseek/score (ref. 72). No previously unreported custom computer code or algorithm was used to generate results.

References

  1. Sung, H. et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

  2. Znaor, A., Lortet-Tieulent, J., Laversanne, M., Jemal, A. & Bray, F. International variations and trends in renal cell carcinoma incidence and mortality. Eur. Urol. 67, 519–530 (2015).

    Article  PubMed  Google Scholar 

  3. Cancer stat facts: kidney and renal pelvis cancer. National Cancer Institute https://seer.cancer.gov/statfacts/html/kidrp.html (2023).

  4. Cancer Facts & Figures 2022. American Cancer Society https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2022.html (2022).

  5. Chow, W. H., Scelo, G. & Tarone, R. E. in Schottenfeld and Fraumeni Cancer Epidemiology and Prevention 4th edn (eds Thun, M. J. et al.) Ch. 51, 961–976 (Oxford Univ. Press, 2018).

  6. Lopez-Beltran, A. et al. 2009 update on the classification of renal epithelial tumors in adults. Int. J. Urol. 16, 432–443 (2009).

    Article  PubMed  Google Scholar 

  7. Haas, N. B. & Nathanson, K. L. Hereditary kidney cancer syndromes. Adv. Chronic Kidney Dis. 21, 81–90 (2014).

    Article  PubMed  Google Scholar 

  8. Andreou, A. et al. Elongin C (ELOC/TCEB1)-associated von Hippel-Lindau disease. Hum. Mol. Genet. 31, 2728–2737 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lang, M. et al. Clinical and molecular characterization of microphthalmia-associated transcription factor (MITF)-related renal cell carcinoma. Urology 149, 89–97 (2021).

    Article  PubMed  Google Scholar 

  10. Schmidt, L. S. et al. PRDM10 RCC: a Birt–Hogg–Dube-like syndrome associated with lipoma and a highly penetrant, aggressive renal tumors morphologically resembling type 2 papillary renal cell carcinoma. Urology 179, 58–70 (2023).

    Article  PubMed  Google Scholar 

  11. Scelo, G. et al. Genome-wide association study identifies multiple risk loci for renal cell carcinoma. Nat. Commun. 8, 15724 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Grampp, S. et al. Genetic variation at the 8q24.21 renal cancer susceptibility locus affects HIF binding to a MYC enhancer. Nat. Commun. 7, 13183 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schodel, J. et al. Common genetic variants at the 11q13.3 renal cancer susceptibility locus influence binding of HIF to an enhancer of cyclin D1 expression. Nat. Genet. 44, 420–425 (2012).

    Article  Google Scholar 

  14. Bigot, P. et al. Functional characterization of the 12p12.1 renal cancer-susceptibility locus implicates BHLHE41. Nat. Commun. 7, 12098 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Colli, L. M. et al. Altered regulation of DPF3, a member of the SWI/SNF complexes, underlies the 14q24 renal cancer susceptibility locus. Am. J. Hum. Genet. 108, 1590–1610 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Riscal, R. et al. Cholesterol auxotrophy as a targetable vulnerability in clear cell renal cell carcinoma. Cancer Discov. 11, 3106–3125 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Grampp, S. et al. Multiple renal cancer susceptibility polymorphisms modulate the HIF pathway. PLoS Genet. 13, e1006872 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Schmid, V. et al. Co-incidence of RCC-susceptibility polymorphisms with HIF cis-acting sequences supports a pathway tuning model of cancer. Sci. Rep. 9, 18768 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Patel, S. A. et al. The renal lineage factor PAX8 controls oncogenic signalling in kidney cancer. Nature 606, 999–1006 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Han, B. & Eskin, E. Random-effects model aimed at discovering associations in meta-analysis of genome-wide association studies. Am. J. Hum. Genet. 88, 586–598 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318–1330 (2020).

  22. Cancer Genome Atlas Research Network et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 45, 1113–1120 (2013).

    Article  PubMed Central  Google Scholar 

  23. Uhlen, M. et al. A pathology atlas of the human cancer transcriptome. Science 357, eaan2507 (2017).

    Article  PubMed  Google Scholar 

  24. Singhal, S. S., Yadav, S., Drake, K., Singhal, J. & Awasthi, S. Hsf-1 and POB1 induce drug sensitivity and apoptosis by inhibiting Ralbp1. J. Biol. Chem. 283, 19714–19729 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Oosterhoff, J. K., Kuhne, L. C., Grootegoed, J. A. & Blok, L. J. EGF signalling in prostate cancer cell lines is inhibited by a high expression level of the endocytosis protein REPS2. Int. J. Cancer 113, 561–567 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Oosterhoff, J. K., Penninkhof, F., Brinkmann, A. O., Anton Grootegoed, J. & Blok, L. J. REPS2/POB1 is downregulated during human prostate cancer progression and inhibits growth factor signalling in prostate cancer cells. Oncogene 22, 2920–2925 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, H., Duan, C. J., Zhang, H., Cheng, Y. D. & Zhang, C. F. Expression and clinical significance of REPS2 in human esophageal squamous cell carcinoma. Asian Pac. J. Cancer Prev. 14, 2851–2857 (2013).

    Article  PubMed  Google Scholar 

  28. He, X. Y. et al. Liver X receptor agonists exert antitumor effects against hepatocellular carcinoma via inducing REPS2 expression. Acta Pharmacol. Sin. 44, 635–646 (2023).

    Article  CAS  PubMed  Google Scholar 

  29. Du, J. et al. Cytoplasmic localization of IRF5 induces Wnt5a/E-cadherin degradation and promotes gastric cancer cells metastasis. Cancer Gene Ther. 30, 866–877 (2023).

    Article  CAS  PubMed  Google Scholar 

  30. Bi, X. et al. Loss of interferon regulatory factor 5 (IRF5) expression in human ductal carcinoma correlates with disease stage and contributes to metastasis. Breast Cancer Res 13, R111 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Massimino, M. et al. IRF5 promotes the proliferation of human thyroid cancer cells. Mol. Cancer 11, 21 (2012).

  32. Guiteras, J. et al. The gene silencing of IRF5 and BLYSS effectively modulates the outcome of experimental lupus nephritis. Mol. Ther. Nucleic Acids 24, 807–821 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zou, Y., Carbonetto, P., Wang, G. & Stephens, M. Fine-mapping from summary data with the ‘Sum of Single Effects’ model. PLoS Genet. 18, e1010299 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kichaev, G. et al. Integrating functional data to prioritize causal variants in statistical fine-mapping studies. PLoS Genet. 10, e1004722 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Iotchkova, V. et al. GARFIELD classifies disease-relevant genomic features through integration of functional annotations with association signals. Nat. Genet. 51, 343–353 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kulakovskiy, I. V. et al. HOCOMOCO: towards a complete collection of transcription factor binding models for human and mouse via large-scale ChIP-Seq analysis. Nucleic Acids Res. 46, D252–D259 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Nassar, A. H. et al. Epigenomic charting and functional annotation of risk loci in renal cell carcinoma. Nat. Commun. 14, 346 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mucci, L. A. et al. Familial risk and heritability of cancer among twins in nordic countries. JAMA 315, 68–76 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang, Y., Qi, G., Park, J. H. & Chatterjee, N. Estimation of complex effect-size distributions using summary-level statistics from genome-wide association studies across 32 complex traits. Nat. Genet. 50, 1318–1326 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, Y. D. et al. Assessment of polygenic architecture and risk prediction based on common variants across fourteen cancers. Nat. Commun. 11, 3353 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Linehan, W. M., Srinivasan, R. & Schmidt, L. S. The genetic basis of kidney cancer: a metabolic disease. Nat. Rev. Urol. 7, 277–285 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chan, J. J., Tabatabaeian, H. & Tay, Y. 3′UTR heterogeneity and cancer progression. Trends Cell Biol. 33, 568–582 (2023).

    Article  CAS  PubMed  Google Scholar 

  43. Yang, Y. et al. The deubiquitinase USP38 promotes NHEJ repair through regulation of HDAC1 activity and regulates cancer cell response to genotoxic insults. Cancer Res. 80, 719–731 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Cancer Genome Atlas Research Network et al. Comprehensive molecular characterization of papillary renal-cell carcinoma. N. Engl. J. Med. 374, 135–145 (2016).

  45. Olshan, A. F. et al. Racial difference in histologic subtype of renal cell carcinoma. Cancer Med 2, 744–749 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Usher-Smith, J., Simmons, R. K., Rossi, S. H. & Stewart, G. D. Current evidence on screening for renal cancer. Nat. Rev. Urol. 17, 637–642 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Jin, Y., Schaffer, A. A., Feolo, M., Holmes, J. B. & Kattman, B. L. GRAF-pop: a fast distance-based method to infer subject ancestry from multiple genotype datasets without principal components analysis. G3 9, 2447–2461 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Database of Genotypes and Phenotypes (NCBI, 2014); https://www.ncbi.nlm.nih.gov/gap/

  49. Brown, D. W., Myers, T. A. & Machiela, M. J. PCAmatchR: a flexible R package for optimal case-control matching using weighted principal components. Bioinformatics 37, 1178–1181 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. Chen, S. et al. A genomic mutational constraint map using variation in 76,156 human genomes. Nature 625, 92–100 (2022).

    Article  Google Scholar 

  51. Taliun, D. et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature 590, 290–299 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Das, S. et al. Next-generation genotype imputation service and methods. Nat. Genet. 48, 1284–1287 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Purdue, M. P. et al. Genome-wide association study of renal cell carcinoma identifies two susceptibility loci on 2p21 and 11q13.3. Nat. Genet. 43, 60–65 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Wu, X. et al. A genome-wide association study identifies a novel susceptibility locus for renal cell carcinoma on 12p11.23. Hum. Mol. Genet 21, 456–462 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Shu, X. et al. Potential susceptibility loci identified for renal cell carcinoma by targeting obesity-related genes. Cancer Epidemiol. Biomark. Prev. 26, 1436–1442 (2017).

    Article  CAS  Google Scholar 

  56. Henrion, M. et al. Common variation at 2q22.3 (ZEB2) influences the risk of renal cancer. Hum. Mol. Genet 22, 825–831 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Purdue, M. P. et al. A genome-wide association study of renal cell carcinoma among African Americans. Cancer Epidemiol. Biomark. Prev. 23, 209–214 (2014).

    Article  CAS  Google Scholar 

  58. Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. Bioinformatics 26, 2867–2873 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kurki, M. I. et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 613, 508–518 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nagai, A. et al. Overview of the BioBank Japan Project: study design and profile. J. Epidemiol. 27, S2–S8 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Index (BioBank Japan, 2017); https://biobankjp.org/en/index.html

  64. Terao, C. et al. Chromosomal alterations among age-related haematopoietic clones in Japan. Nature 584, 130–135 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tanaka, N. et al. Eight novel susceptibility loci and putative causal variants in atopic dermatitis. J. Allergy Clin. Immunol. 148, 1293–1306 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Zhou, W. et al. Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. Nat. Genet. 50, 1335–1341 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Begg, C. B. & Zhang, Z. F. Statistical analysis of molecular epidemiology studies employing case-series. Cancer Epidemiol. Biomark. Prev. 3, 173–175 (1994).

    CAS  Google Scholar 

  70. Lyon, M. S. et al. The variant call format provides efficient and robust storage of GWAS summary statistics. Genome Biol. 22, 32 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  72. freeseek (Github, 2022); https://github.com/freeseek/score

  73. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 44, 369–375 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lin, S. H., Brown, D. W. & Machiela, M. J. LDtrait: an online tool for identifying published phenotype associations in linkage disequilibrium. Cancer Res. 80, 3443–3446 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Consortium, E. P. et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature 583, 699–710 (2020).

    Article  Google Scholar 

  77. Coetzee, S. G., Coetzee, G. A. & Hazelett, D. J. motifbreakR: an R/Bioconductor package for predicting variant effects at transcription factor binding sites. Bioinformatics 31, 3847–3849 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yang, J. et al. Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body mass index. Nat. Genet. 47, 1114–1120 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Fingenius (FINBB, 2024); https://site.fingenious.fi/en/

  81. Data (FINDATA, 2017); https://findata.fi/en/data/

  82. Laboratory for Statistical and Translational Genetics (Japanese ENcyclopedia of GEnetic associations by Riken, 2021); http://jenger.riken.jp/en/

  83. GARFIELD (EMBL-EBI, 2015); https://www.ebi.ac.uk/birney-srv/GARFIELD/

  84. GTEx Portal (GTEx, 2017); https://gtexportal.org/home/

  85. Repository (Genomic Data Commons, 2024); https://portal.gdc.cancer.gov/repository

  86. Cis-eQTLs and Trans-eQTLs in 33 Cancer Types (PancanQTL, 2018); http://gong_lab.hzau.edu.cn/PancanQTL/

Download references

Acknowledgements

We thank O. Jahagirdar and A. Klein for their efforts in implementing various computational pipelines used in this project. This research was supported by the Intramural Research Program of the National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, as well as with Federal funds from the National Cancer Institute under contract no. 75N91019D00024. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government. Where authors are identified as personnel of the International Agency for Research on Cancer/World Health Organization, the authors alone are responsible for the views expressed in this article and they do not necessarily represent the decisions, policy or views of the International Agency for Research on Cancer/World Health Organization. Acknowledgments and funding sources for participating centers are provided in Supplementary Table 17.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

M.P.P., D.D., M.J.M., B.R.G., P. Brennan, J.G. and S.J.C. contributed to the design and execution of the overall study. M.Y., N.R.C., B.D.H., M.R.M. and A.A.H. performed the experiments. M.P.P., D.D., M.J.M., B.R.G., T.W., D.O., S.C., A. Liu, K.H., K.M.B., J.R. and S.J.C. contributed to the design and execution of the statistical analysis. M.P.P., D.D., M.J.M., B.R.G. and S.J.C. contributed to the first draft of the paper. P. Brennan, J.G. and S.J.C. edited the paper. A.F.-I., P.S., A. Liu, C.W., S.O.A., J. Larkin, S.C.Z., M.S., K.H., A.H., K.A.L., F. Cárcano, O.B., B.S., K.G.N., G.M., D.S., W.R.D., M.A.A.K.F., A.v.B., F.N., J.N.H., N.R., W.Y.H., W.M.L., A. Lori, M.F., M.Z.-M., S.V.S., W.J.M., Biobank Japan Project, A.V., R.D., F. Carusso, L.S.G., K.A., M.A.B., C.A., I.P., S. Ricard, FinnGen, G.S., R.E.B., N.S.V., N.S., G.D.S., A.A., S.B., D.H., N.G., P.P., M.S., A.P., F.I.N., M.J.F., X.Z., L.J.M., M.K., T.E., S.A.C., D.C.C., R.G.U., D.Z., A.M., I.H., A.H., L.F., V. Janout, D.M., V. Jinga, S. Rascu, M.M., S.S., S.M., V.G., B.A.-A., J.M., M.J., L.P., L.H., J. Li, I.L., S.M.B., A.G.S., C.T.G.S., R.B.R., F.P.G., M.D.C., M.P., G.-S.M.L., M.L.F., A.J., S.E.G., A.S., R.H.T., V.S., D.D.T., C.T.B., D.A., E.T.L., W.C.N., V.A.M., A.V.P., J.-C.B., N.D.F., P. Bigot, R.M.R., L.M.C., A.F., B.J.M., C.T., T.K.C., D.M.C., R.H., J.E.E.-P., P.H.A., A.G., P. Brennan and J.G. contributed samples and/or data. All authors critically reviewed the paper. The following authors contributed equally as co-first authors: M.P.P., D.D., M.J.M. and B.R.G. The following authors contributed equally to the work as co-second authors: T.W., D.O., S.C., A.F.I., P.A.S., A. Liu, C.W., S.O.A., J. Larkin, S.C.Z., M.S., K.H., A.H., K.A.L., F. Cárcano, O.B., B.S., K.G.N., G.M., D.S., W.R.D., M.A.A.K.F., A.v.B. and F.N. The following authors contributed equally as co-second-last authors: D.A., E.T.L., W.C.N., V.A.M., A.V.P., L.M.C., J.C.B., N.F., P. Bigot, R.M.R., A.F., B.J.M., C.T., T.K.C., D.M., R.H., J.E.E.-P., P.H.A. and A.G. The following authors jointly supervised this work: P. Brennan, J.G. and S.J.C.

Corresponding authors

Correspondence to Mark P. Purdue or Stephen J. Chanock.

Ethics declarations

Competing interests

D.S. has received funds from Janssen for consulting outside of the submitted work. N.S.V. has received grants, personal fees and non-financial support from Bristol Myers Squibb; personal fees and non-financial support from Ipsen and EUSA Pharma; and personal fees from Merck Serono, Pfizer, Eisai Ltd and 4D Pharma, all outside the submitted work. G.D.S. has received educational grants from Pfizer and AstraZeneca; consultancy fees from Pfizer, Merck, EUSA Pharma and MSD; travel expenses from Pfizer and speaker fees from Pfizer, all outside the submitted work. M.S. has received honoraria from Covidien/Medtronic for teaching on courses and speaker fees from Pfizer, all outside the submitted work. L.M.C. has received research funding from BMS, Novartis and GSK, all outside the submitted work. B.J.M. has received funding from the NCCN Hereditary Kidney Cancer Panel and Merck, all outside the submitted work. T.K.C. has received funding from Alkermes, AstraZeneca, Aravive, Aveo, Bayer, Bristol Myers Squibb, Calithera, Circle Pharma, Deciphera Pharmaceuticals, Eisai, EMD Serono, Exelixis, GlaxoSmithKline, Gilead, IQVIA, Infinity, Ipsen, Jansen, Kanaph, Lilly, Merck, Nikang, Nuscan, Novartis, Oncohost, Pfizer, Roche, Sanofi/Aventis, Scholar Rock, Surface Oncology, Takeda, Tempest, Up-To-Date, CME events (Peerview, OncLive, MJH, CCO and others), outside the submitted work. The other authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks Christopher Amos and A. Ari Hakimi for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Pleiotropic effects of kidney cancer loci for other cancers and risk factors.

Pleiotropy matrix summarizing kidney cancer susceptibility loci with evidence of pleiotropic effects for other cancers and/or selected risk factors (body mass index, hypertension, blood pressure, smoking) from searches of GWAS Catalog and UK Biobank GWAS summary statistics. Cell colors indicating associations with specific traits: red, other cancers; blue, body mass index; orange, hypertension or blood pressure; violet, smoking. Locus-trait summary statistics listed in Supplementary Table 11 (GWAS Catalog) and 12 (UK Biobank).

Extended Data Fig. 2 In silico analysis of enrichment for putative regulatory annotations among kidney cancer loci.

Enrichment of variants associated with overall RCC in (a) DNAse Hotspots (b) Histone modification sites (c) Chromatin states (d) different genic locations. The enrichments are depicted for variants at different p-value thresholds denoted by the colors and across different categories in each panel. The results were computed using GARFIELD v2.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Purdue, M.P., Dutta, D., Machiela, M.J. et al. Multi-ancestry genome-wide association study of kidney cancer identifies 63 susceptibility regions. Nat Genet (2024). https://doi.org/10.1038/s41588-024-01725-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41588-024-01725-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing