Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis of prostaglandin efflux by MRP4

Abstract

Multidrug resistance protein 4 (MRP4) is a broadly expressed ATP-binding cassette transporter that is unique among the MRP subfamily for transporting prostanoids, a group of signaling molecules derived from unsaturated fatty acids. To better understand the basis of the substrate selectivity of MRP4, we used cryogenic-electron microscopy to determine six structures of nanodisc-reconstituted MRP4 at various stages throughout its transport cycle. Substrate-bound structures of MRP4 in complex with PGE1, PGE2 and the sulfonated-sterol DHEA-S reveal a common binding site that accommodates a diverse set of organic anions and suggest an allosteric mechanism for substrate-induced enhancement of MRP4 ATPase activity. Our structure of a catalytically compromised MRP4 mutant bound to ATP-Mg2+ is outward-occluded, a conformation previously unobserved in the MRP subfamily and consistent with an alternating-access transport mechanism. Our study provides insights into the endogenous function of this versatile efflux transporter and establishes a basis for MRP4-targeted drug design.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Functional characterization of MRP4 and identification of three stimulating substrates.
Fig. 2: Structures of MRP4 in multiple conformations along the substrate transport cycle.
Fig. 3: Comparison of the inward-open, inward-narrow and outward-occluded conformations of MRP4.
Fig. 4: Structural asymmetry between NBD1 and NBD2.
Fig. 5: DHEA-S and prostaglandin binding to MRP4.
Fig. 6: Structural comparison between MRP4 and related ABCC family members.
Fig. 7: Proposed translocation cycle of MRP4.

Similar content being viewed by others

Data availability

All five three-dimensional cryo-EM density maps have been deposited to the Electron Microscopy Data Bank (EMDB) under accession numbers EMD-40829 (apowide MRP4), EMD-40828 (aponarrow MRP4), EMD-40827 (PGE1-bound MRP4), EMD-40830 (PGE2-bound MRP4), EMD-40826 (DHEA-S-bound MRP4) and EMD-40821 (ATP-bound MRP4E1202Q). The coordinates for the atomic models have been deposited in the Protein Data Bank (PDB) under accession numbers 8SXA (apowide MRP4), 8SX9 (aponarrow MRP4), 8SX8 (PGE1-bound MRP4), 8SXB (PGE2-bound MRP4), 8SX7 (DHEA-S-bound MRP4) and 8SWN (ATP-bound MRP4E1202Q). See Table 1 for more details. Source data are provided with this paper.

References

  1. Chabowski, D. S., Cohen, K. E., Abu-Hatoum, O., Gutterman, D. D. & Freed, J. K. Crossing signals: bioactive lipids in the microvasculature. Am. J. Physiol. Heart Circ. Physiol. 318, H1185–H1197 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Harizi, H. & Gualde, N. The impact of eicosanoids on the crosstalk between innate and adaptive immunity: the key roles of dendritic cells. Tissue Antigens 65, 507–514 (2005).

    CAS  PubMed  Google Scholar 

  3. Martens, M. D., Fernando, A. S. & Gordon, J. W. A new trick for an old dog? Myocardial-specific roles for prostaglandins as mediators of ischemic injury and repair. Am. J. Physiol. Heart Circ. Physiol. 320, H2169–H2184 (2021).

    CAS  PubMed  Google Scholar 

  4. Mitchell, J. A. & Kirkby, N. S. Eicosanoids, prostacyclin and cyclooxygenase in the cardiovascular system. Br. J. Pharmacol. 176, 1038–1050 (2019).

    CAS  PubMed  Google Scholar 

  5. Oyesola, O. O. & Tait Wojno, E. D. Prostaglandin regulation of type 2 inflammation: from basic biology to therapeutic interventions. Eur. J. Immunol. 51, 2399–2416 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Vannuccini, S., Bocchi, C., Severi, F. M., Challis, J. R. & Petraglia, F. Endocrinology of human parturition. Ann. Endocrinol. 77, 105–113 (2016).

    Google Scholar 

  7. Zeilhofer, H. U. Prostanoids in nociception and pain. Biochem. Pharmacol. 73, 165–174 (2007).

    CAS  PubMed  Google Scholar 

  8. Biringer, R. G. The enzymology of the human prostanoid pathway. Mol. Biol. Rep. 47, 4569–4586 (2020).

    CAS  PubMed  Google Scholar 

  9. Johnson, A. M., Kleczko, E. K. & Nemenoff, R. A. Eicosanoids in cancer: new roles in immunoregulation. Front Pharm. 11, 595498 (2020).

    CAS  Google Scholar 

  10. Mitchell, J. A. et al. Cyclooxygenases and the cardiovascular system. Pharmacol. Ther. 217, 107624 (2021).

    CAS  PubMed  Google Scholar 

  11. Wang, D., Cabalag, C. S., Clemons, N. J. & DuBois, R. N. Cyclooxygenases and prostaglandins in tumor immunology and microenvironment of gastrointestinal cancer. Gastroenterology 161, 1813–1829 (2021).

    CAS  PubMed  Google Scholar 

  12. Beaman, J., Prifti, C., Schwarz, E. B. & Sobota, M. Medication to manage abortion and miscarriage. J. Gen. Intern Med 35, 2398–2405 (2020).

    PubMed  PubMed Central  Google Scholar 

  13. Klimko, P. G. & Sharif, N. A. Discovery, characterization and clinical utility of prostaglandin agonists for the treatment of glaucoma. Br. J. Pharmacol. 176, 1051–1058 (2019).

    CAS  PubMed  Google Scholar 

  14. Lang, I. M. & Gaine, S. P. Recent advances in targeting the prostacyclin pathway in pulmonary arterial hypertension. Eur. Respir. Rev. 24, 630–641 (2015).

    PubMed  PubMed Central  Google Scholar 

  15. Lee, O. Y. et al. A comparative study of DA-9601 and misoprostol for prevention of NSAID-associated gastroduodenal injury in patients undergoing chronic NSAID treatment. Arch. Pharm. Res 37, 1308–1316 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Stephenson, M. L. & Wing, D. A. Misoprostol for induction of labor. Semin Perinatol. 39, 459–462 (2015).

    PubMed  Google Scholar 

  17. Reid, G. et al. The human multidrug resistance protein MRP4 functions as a prostaglandin efflux transporter and is inhibited by nonsteroidal antiinflammatory drugs. Proc. Natl Acad. Sci. USA 100, 9244–9249 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Wen, J. et al. The pharmacological and physiological role of multidrug-resistant protein 4. J. Pharmacol. Exp. Ther. 354, 358–375 (2015).

    CAS  PubMed  Google Scholar 

  19. Rius, M., Thon, W. F., Keppler, D. & Nies, A. T. Prostanoid transport by multidrug resistance protein 4 (MRP4/ABCC4) localized in tissues of the human urogenital tract. J. Urol. 174, 2409–2414 (2005).

    CAS  PubMed  Google Scholar 

  20. Tanaka, N., Kawai, J., Hirasawa, N., Mano, N. & Yamaguchi, H. ATP-Binding cassette transporter C4 is a prostaglandin D2 exporter in HMC-1 cells. Prostaglandins Leukot. Ess. Fat. Acids 159, 102139 (2020).

    CAS  Google Scholar 

  21. Kalinski, P. Regulation of immune responses by prostaglandin E2. J. Immunol. 188, 21–28 (2012).

    CAS  PubMed  Google Scholar 

  22. Kochel, T. J., Reader, J. C., Ma, X., Kundu, N. & Fulton, A. M. Multiple drug resistance-associated protein (MRP4) exports prostaglandin E2 (PGE2) and contributes to metastasis in basal/triple negative breast cancer. Oncotarget 8, 6540–6554 (2017).

    PubMed  Google Scholar 

  23. Zelcer, N. et al. Steroid and bile acid conjugates are substrates of human multidrug-resistance protein (MRP) 4 (ATP-binding cassette C4). Biochem. J. 371, 361–367 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen, Z. S., Lee, K. & Kruh, G. D. Transport of cyclic nucleotides and estradiol 17-b-d-glucuronide by multidrug resistance protein 4. Resistance to 6-mercaptopurine and 6-thioguanine. J. Biol. Chem. 276, 33747–33754 (2001).

    CAS  PubMed  Google Scholar 

  25. Hara, Y. et al. Inhibition of MRP4 prevents and reverses pulmonary hypertension in mice. J. Clin. Invest. 121, 2888–2897 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Decouture, B. et al. Impaired platelet activation and cAMP homeostasis in MRP4-deficient mice. Blood 126, 1823–1830 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Li, C. et al. Spatiotemporal coupling of cAMP transporter to CFTR chloride channel function in the gut epithelia. Cell 131, 940–951 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Moon, C. et al. Compartmentalized accumulation of cAMP near complexes of multidrug resistance protein 4 (MRP4) and cystic fibrosis transmembrane conductance regulator (CFTR) contributes to drug-induced diarrhea. J. Biol. Chem. 290, 11246–11257 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen, Z. S. et al. Analysis of methotrexate and folate transport by multidrug resistance protein 4 (ABCC4): MRP4 is a component of the methotrexate efflux system. Cancer Res. 62, 3144–3150 (2002).

    CAS  PubMed  Google Scholar 

  30. Ci, L. et al. Involvement of MRP4 (ABCC4) in the luminal efflux of ceftizoxime and cefazolin in the kidney. Mol. Pharmacol. 71, 1591–1597 (2007).

    CAS  PubMed  Google Scholar 

  31. Imaoka, T. et al. Functional involvement of multidrug resistance-associated protein 4 (MRP4/ABCC4) in the renal elimination of the antiviral drugs adefovir and tenofovir. Mol. Pharmacol. 71, 619–627 (2007).

    CAS  PubMed  Google Scholar 

  32. Kohler, J. J. et al. Tenofovir renal proximal tubular toxicity is regulated by OAT1 and MRP4 transporters. Lab. Invest. 91, 852–858 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ray, A. S. et al. Mechanism of active renal tubular efflux of tenofovir. Antimicrob. Agents Chemother. 50, 3297–3304 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Rius, M., Hummel-Eisenbeiss, J., Hofmann, A. F. & Keppler, D. Substrate specificity of human ABCC4 (MRP4)-mediated cotransport of bile acids and reduced glutathione. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G640–G649 (2006).

    CAS  PubMed  Google Scholar 

  35. Rius, M., Hummel-Eisenbeiss, J. & Keppler, D. ATP-dependent transport of leukotrienes B4 and C4 by the multidrug resistance protein ABCC4 (MRP4). J. Pharmacol. Exp. Ther. 324, 86–94 (2008).

    CAS  PubMed  Google Scholar 

  36. Rius, M., Nies, A. T., Hummel-Eisenbeiss, J., Jedlitschky, G. & Keppler, D. Cotransport of reduced glutathione with bile salts by MRP4 (ABCC4) localized to the basolateral hepatocyte membrane. Hepatology 38, 374–384 (2003).

    CAS  PubMed  Google Scholar 

  37. Vogt, K. et al. Release of platelet-derived sphingosine-1-phosphate involves multidrug resistance protein 4 (MRP4/ABCC4) and Is inhibited by statins. Thromb. Haemost. 118, 132–142 (2018).

    PubMed  Google Scholar 

  38. Hagmann, W. et al. Purification of the human apical conjugate export pump MRP2 reconstitution and functional characterization as substrate-stimulated ATPase. Eur. J. Biochem. 265, 281–289 (1999).

    CAS  PubMed  Google Scholar 

  39. Mao, Q., Leslie, E. M., Deeley, R. G. & Cole, S. P. ATPase activity of purified and reconstituted multidrug resistance protein MRP1 from drug-selected H69AR cells. Biochim. Biophys. Acta 1461, 69–82 (1999).

    CAS  PubMed  Google Scholar 

  40. Shapiro, A. B. & Ling, V. ATPase activity of purified and reconstituted P-glycoprotein from Chinese hamster ovary cells. J. Biol. Chem. 269, 3745–3754 (1994).

    CAS  PubMed  Google Scholar 

  41. Sauna, Z. E., Nandigama, K. & Ambudkar, S. V. Multidrug resistance protein 4 (ABCC4)-mediated ATP hydrolysis: effect of transport substrates and characterization of the post-hydrolysis transition state. J. Biol. Chem. 279, 48855–48864 (2004).

    CAS  PubMed  Google Scholar 

  42. Berthier, J., Arnion, H., Saint-Marcoux, F. & Picard, N. Multidrug resistance-associated protein 4 in pharmacology: overview of its contribution to pharmacokinetics, pharmacodynamics and pharmacogenetics. Life Sci. 231, 116540 (2019).

    CAS  PubMed  Google Scholar 

  43. Stockner, T., Gradisch, R. & Schmitt, L. The role of the degenerate nucleotide binding site in type I ABC exporters. FEBS Lett. 594, 3815–3838 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Copsel, S. et al. Multidrug resistance protein 4 (MRP4/ABCC4) regulates cAMP cellular levels and controls human leukemia cell proliferation and differentiation. J. Biol. Chem. 286, 6979–6988 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Hayashi, H. et al. Sorting nexin 27 interacts with multidrug resistance-associated protein 4 (MRP4) and mediates internalization of MRP4. J. Biol. Chem. 287, 15054–15065 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Payen, L. F., Gao, M., Westlake, C. J., Cole, S. P. & Deeley, R. G. Role of carboxylate residues adjacent to the conserved core Walker B motifs in the catalytic cycle of multidrug resistance protein 1 (ABCC1). J. Biol. Chem. 278, 38537–38547 (2003).

    CAS  PubMed  Google Scholar 

  47. Johnson, Z. L. & Chen, J. Structural basis of substrate recognition by the multidrug resistance protein MRP1. Cell 168, 1075–1085 e9 (2017).

    CAS  PubMed  Google Scholar 

  48. Mi, W. et al. Structural basis of MsbA-mediated lipopolysaccharide transport. Nature 549, 233–237 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Hofmann, S. et al. Conformation space of a heterodimeric ABC exporter under turnover conditions. Nature 571, 580–583 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sedzicki, J. et al. Mechanism of cyclic beta-glucan export by ABC transporter Cgt of Brucella. Nat. Struct. Mol. Biol. 29, 1170–1177 (2022).

    CAS  PubMed  Google Scholar 

  51. Choudhury, H. G. et al. Structure of an antibacterial peptide ATP-binding cassette transporter in a novel outward occluded state. Proc. Natl Acad. Sci. USA 111, 9145–9150 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Olsen, J. A., Alam, A., Kowal, J., Stieger, B. & Locher, K. P. Structure of the human lipid exporter ABCB4 in a lipid environment. Nat. Struct. Mol. Biol. 27, 62–70 (2020).

    CAS  PubMed  Google Scholar 

  53. Lee, K. P. K., Chen, J. & MacKinnon, R. Molecular structure of human KATP in complex with ATP and ADP. eLife 6, e32481 (2017).

    PubMed  PubMed Central  Google Scholar 

  54. El-Sheikh, A. A., van den Heuvel, J. J., Krieger, E., Russel, F. G. & Koenderink, J. B. Functional role of arginine 375 in transmembrane helix 6 of multidrug resistance protein 4 (MRP4/ABCC4). Mol. Pharmacol. 74, 964–971 (2008).

    CAS  PubMed  Google Scholar 

  55. Wittgen, H. G. et al. Phenylalanine 368 of multidrug resistance-associated protein 4 (MRP4/ABCC4) plays a crucial role in substrate-specific transport activity. Biochem. Pharmacol. 84, 366–373 (2012).

    CAS  PubMed  Google Scholar 

  56. Schuetz, J. D. et al. MRP4: a previously unidentified factor in resistance to nucleoside-based antiviral drugs. Nat. Med. 5, 1048–1051 (1999).

    CAS  PubMed  Google Scholar 

  57. van Aubel, R. A., Smeets, P. H., Peters, J. G., Bindels, R. J. & Russel, F. G. The MRP4/ABCC4 gene encodes a novel apical organic anion transporter in human kidney proximal tubules: putative efflux pump for urinary cAMP and cGMP. J. Am. Soc. Nephrol. 13, 595–603 (2002).

    PubMed  Google Scholar 

  58. Kawahara, K., Hohjoh, H., Inazumi, T., Tsuchiya, S. & Sugimoto, Y. Prostaglandin E2-induced inflammation: relevance of prostaglandin E receptors. Biochim. Biophys. Acta 1851, 414–421 (2015).

    CAS  PubMed  Google Scholar 

  59. Barnett, R. E. Effect of monovalent cations on the ouabain iniibition of the sodium and potassium ion activated adenosine triphosphatase. Biochemistry 9, 4644–4648 (1970).

    CAS  PubMed  Google Scholar 

  60. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    CAS  PubMed  Google Scholar 

  62. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D. Biol. Crystallogr. 66, 486–501 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D. Biol. Crystallogr. 66, 213–221 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Croll, T. I. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr. D. Struct. Biol. 74, 519–530 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Sanchez-Garcia, R. et al. DeepEMhancer: a deep learning solution for cryo-EM volume post-processing. Commun. Biol. 4, 874 (2021).

    PubMed  PubMed Central  Google Scholar 

  66. Pettersen, E. F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS  PubMed  Google Scholar 

  67. Pravda, L. et al. MOLEonline: a web-based tool for analyzing channels, tunnels and pores (2018 update). Nucleic Acids Res. 46, W368–W373 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Voss, N. R. & Gerstein, M. 3V: cavity, channel and cleft volume calculator and extractor. Nucleic Acids Res. 38, W555–W562 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Laskowski, R. A. & Swindells, M. B. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 51, 2778–2786 (2011).

    CAS  PubMed  Google Scholar 

  70. Pintilie, G. et al. Measurement of atom resolvability in cryo-EM maps with Q-scores. Nat. Methods 17, 328–334 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank P. Nguyen for assistance with virus production and D. Asarnow for discussions regarding purification and reconstitution of MRP4. This work was supported by the National Institutes of Health (NIH) National Institute of General Medical Sciences (grants NIGMS GM24485 to R.M.S. and R35GM140847 to Y.C.). R.B. was supported in part by American Heart Association postdoctoral fellowship award 9POST34370101. Mass spectrometry was performed in the UCSF Mass Spectrometry facility supported by NIH grant P41 GM103481. We thank D. P. Bulkley, G. Gilbert and M. Harrington for support with cryo-EM data collection. All data were collected at the UCSF cryo-EM facility, which is supported by NIH grants S10OD020054, S10OD021741 and S10OD026881.

Author information

Authors and Affiliations

Authors

Contributions

R.M.S., D.L.K., C.S.C., Y.C. and A.S. conceived this work. S.P., R.B. and G.M.K. expressed and functionally characterized proteins. S.P., E.G. and M.G. collected and processed cryo-EM data. S.P. and E.G. performed model building and refinement. S.P., R.B., E.G., I.E.C., R.M.S. and D.L.K. wrote the manuscript with contributions from all other authors.

Corresponding authors

Correspondence to Deanna L. Kroetz or Robert M. Stroud.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Structural & Molecular Biology thanks Kenneth Linton and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Katarzyna Ciazynska, in collaboration with the Nature Structural & Molecular Biology team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Sequence alignment of MRP4 and MRP1 homologs.

Sequences of bovine and human MRP4 are aligned to reflect sequence conservation across evolution and similarity to the closely related MRP1. All references to MRP4 used throughout the text refer to the bovine sequence. The residue numbers for bovine MRP4 are indicated above the sequences. Red asterisks denote a residue involved in binding one of either DHEA-S, PGE1, or PGE2. Text boxes refer to conserved sequence motifs from NBD1 (pink) and NBD2 (cyan), NBD2’s inserted sequence (orange) and the C-terminal PDZ-binding motif (PDZ-BM, sand). Bovine MRP4 catalytic residue E1202 is highlighted in red.

Extended Data Fig. 2 Biochemical characterization of MRP4.

Fold change in ATPase activity relative to basal levels with the addition of increasing concentrations of a, PGE1, PGE2, b, DHEAS, c, cAMP, cGMP, d, LTC4, e, tenofovir, f, E217G, g, folic acid, h, S1P. Data in each panel were obtained from separate preparations of MRP4 in MSP lipid nanodisc. The basal ATPase specific activity across the samples used in panels a-f was 13.6 ± 4.5 nmol min-1 mg-1 from 10 biological replicates. PGE1, prostaglandin E1; PGE2, prostaglandin E2; cAMP, cyclic adenosine monophosphate; cGMP, cyclic guanosine monophosphate; LTC4, leukotriene C4; DHEA-S, dehydroepiandrosterone sulfate; E217G, β-estradiol-17β-D-glucuronide; S1P, sphingosine-1-phosphate.

Source data

Extended Data Fig. 3 cAMP does not elicit a conformational change in MRP4 in cryo-EM.

a Final density of MRP4 in the presence of 1 mM cAMP from cryoSPARC. Sharpened output volume in gray, lowpass filtered volume showing the nanodisc and NBDs as black silhouette. b Rigid body fitting of apo MRP4 into density obtained in the presence of 1 mM cAMP. Density in gray, MRP4 domains colored as before. c View of substrate binding residues of the rigid-body fit apo MRP4 model in the density obtained for MRP4 in the presence of 1 mM cAMP. Map contoured at low threshold, revealing non-protein density similar to our apo MRP4 refinement. Density in purple mesh, MRP4 domains colored as before.

Extended Data Fig. 4 The domains of MRP4 move as rigid bodies throughout the substrate transport cycle.

Superposition of a, bundle 1 (TMs 1, 2, 3, 6, 10, 11) b, bundle 2 (TMs 4, 5, 7, 8, 9, 12) c, NBD1 and d, NBD2 across all five structures. Apowide MRP4 in salmon, aponarrow MRP4 in green, DHEA-S-bound MRP4 in cyan, PGE1-bound MRP4 in grey, PGE2-bound MRP4 in pink, ATP-Mg2+-bound MRP4 in yellow. e, Superposition of the three substrate-bound structures reveals them to share an inward-open, narrow conformation. RMSD between all Cα of DHEA-S-bound MRP4 and PGE1-bound MRP4 is 1.2 Å; between DHEA-S-bound and PGE2-bound is 0.87 Å; between PGE1-bound and PGE2-bound is 0.90 Å. Structures are colored as in a-d.

Extended Data Fig. 5 The outward-facing occluded state of MRP4 closely resembles the structure of SUR1 bound to ADP/ATP.

a Front view, b side view, and c top view of MRP4E1202Q bound to ATP-Mg2+ and SUR1 bound to ADP-ATP (shown as single chain from PDB ID:6C3O). TMD0 domain in SUR1 is hidden for clarity in a and c. Cα RMSD between our ATP-bound structure and SUR1 with TMD0 domain deleted is 4.36 Å. MRP4E1202Q bound to ATP-Mg2+ in pink, SUR1 bound to ADP-ATP in cyan, TMD0 domain in light gray.

Extended Data Table 1 Kinetic parameters for ATPase activity of MRP4

Supplementary information

Source data

Source Data Fig. 1

SEC A280 source data for Fig. 1b; Spectromax A340 source data for Fig. 1c,d,e.

Source Data Fig. 2

Uncropped gel image for Fig. 1b. Coomassie brilliant blue stained gel. Alternating lanes of ladders and serial dilutions of the peak MRP4–nanodisc fraction from SEC.

Source Data Extended Data Fig. 2

Spectromax A340 source data for Extended Fig. 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourmal, S., Green, E., Bajaj, R. et al. Structural basis of prostaglandin efflux by MRP4. Nat Struct Mol Biol 31, 621–632 (2024). https://doi.org/10.1038/s41594-023-01176-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-023-01176-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing