Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

An expanded CRISPR–Cas9-assisted recombineering toolkit for engineering genetically intractable Pseudomonas aeruginosa isolates

Abstract

Much of our current understanding of microbiology is based on the application of genetic engineering procedures. Since their inception (more than 30 years ago), methods based largely on allelic exchange and two-step selection processes have become a cornerstone of contemporary bacterial genetics. While these tools are established for adapted laboratory strains, they have limited applicability in clinical or environmental isolates displaying a large and unknown genetic repertoire that are recalcitrant to genetic modifications. Hence, new tools allowing genetic engineering of intractable bacteria must be developed to gain a comprehensive understanding of them in the context of their biological niche. Herein, we present a method for precise, efficient and rapid engineering of the opportunistic pathogen Pseudomonas aeruginosa. This procedure relies on recombination of short single-stranded DNA facilitated by targeted double-strand DNA breaks mediated by a synthetic Cas9 coupled with the efficient Ssr recombinase. Possible applications include introducing single-nucleotide polymorphisms, short or long deletions, and short DNA insertions using synthetic single-stranded DNA templates, drastically reducing the need of PCR and cloning steps. Our toolkit is encoded on two plasmids, harboring an array of different antibiotic resistance cassettes; hence, this approach can be successfully applied to isolates displaying natural antibiotic resistances. Overall, this toolkit substantially reduces the time required to introduce a range of genetic manipulations to a minimum of five experimental days, and enables a variety of research and biotechnological applications in both laboratory strains and difficult-to-manipulate P. aeruginosa isolates.

Key points

  • This protocol provides an expanded toolkit for engineering genetically intractable Pseudomonas aeruginosa isolates, utilizing two plasmids to enable Ssr-mediated recombineering and CRISPR–Cas9 counterselection of mutated bacterial colonies in a single-step procedure.

  • The toolkit markedly reduces the time required to introduce a range of genetic manipulations compared with previous allelic exchange methods, facilitating a variety of research and biotechnological applications in both laboratory strains and difficult-to-manipulate P. aeruginosa isolates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The CRISPR–Cas9-recombineering system for genomic manipulation in P. aeruginosa.
Fig. 2: Design of spacer DNA sequences and recombineering oligonucleotides.
Fig. 3: Overview of the protocol workflow.
Fig. 4: Expected results for each of the described applications.

Similar content being viewed by others

Data availability

The authors declare that no new data were generated during the development of this protocol. The original publication describing the method expanded herein is available in the primary research paper (https://doi.org/10.1038/s41522-022-00268-1). All plasmids described in this protocol are available at Addgene (Table 1). Source data are provided with this paper.

References

  1. Silby, M. W., Winstanley, C., Godfrey, S. A., Levy, S. B. & Jackson, R. W. Pseudomonas genomes: diverse and adaptable. FEMS Microbiol. Rev. 35, 652–680 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Tacconelli, E. et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 18, 318–327 (2018).

    Article  PubMed  Google Scholar 

  3. Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655 (2022).

    Article  Google Scholar 

  4. Lee, D. G. et al. Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial. Genome Biol. 7, R90 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Klockgether, J., Cramer, N., Wiehlmann, L., Davenport, C. F. & Tummler, B. Pseudomonas aeruginosa genomic structure and diversity. Front. Microbiol. 2, 150 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Freschi, L. et al. The Pseudomonas aeruginosa pan-genome provides new insights on its population structure, horizontal gene transfer, and pathogenicity. Genome Biol. Evol. 11, 109–120 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Ciofu, O., Riis, B., Pressler, T., Poulsen, H. E. & Hoiby, N. Occurrence of hypermutable Pseudomonas aeruginosa in cystic fibrosis patients is associated with the oxidative stress caused by chronic lung inflammation. Antimicrob. Agents Chemother. 49, 2276–2282 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rossi, E. et al. Pseudomonas aeruginosa adaptation and evolution in patients with cystic fibrosis. Nat. Rev. Microbiol. 19, 331–342 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Culyba, M. J. & Van Tyne, D. Bacterial evolution during human infection: adapt and live or adapt and die. PLoS Pathog. 17, e1009872 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schweizer, H. P. Allelic exchange in Pseudomonas aeruginosa using novel ColE1-type vectors and a family of cassettes containing a portable oriT and the counter-selectable Bacillus subtilis sacB marker. Mol. Microbiol. 6, 1195–1204 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Hoang, T. T., Karkhoff-Schweizer, R. R., Kutchma, A. J. & Schweizer, H. P. A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212, 77–86 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Choi, K. H. & Schweizer, H. P. An improved method for rapid generation of unmarked Pseudomonas aeruginosa deletion mutants. BMC Microbiol. 5, 30 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Shanks, R. M., Caiazza, N. C., Hinsa, S. M., Toutain, C. M. & O’Toole, G. A. Saccharomyces cerevisiae-based molecular tool kit for manipulation of genes from gram-negative bacteria. Appl. Environ. Microbiol. 72, 5027–5036 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Martinez-Garcia, E. & de Lorenzo, V. Engineering multiple genomic deletions in Gram-negative bacteria: analysis of the multi-resistant antibiotic profile of Pseudomonas putida KT2440. Environ. Microbiol. 13, 2702–2716 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Hmelo, L. R. et al. Precision-engineering the Pseudomonas aeruginosa genome with two-step allelic exchange. Nat. Protoc. 10, 1820–1841 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ran, F. A. et al. Genome engineering using the CRISPR–Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wirth, N. T., Kozaeva, E. & Nikel, P. I. Accelerated genome engineering of Pseudomonas putida by I-SceI-mediated recombination and CRISPR-Cas9 counterselection. Microb. Biotechnol. 13, 233–249 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Aparicio, T., Jensen, S. I., Nielsen, A. T., de Lorenzo, V. & Martinez-Garcia, E. The Ssr protein (T1E_1405) from Pseudomonas putida DOT-T1E enables oligonucleotide-based recombineering in platform strain P. putida EM42. Biotechnol. J. 11, 1309–1319 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl Acad. Sci. Usa. 97, 6640–6645 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lesic, B. & Rahme, L. G. Use of the lambda Red recombinase system to rapidly generate mutants in Pseudomonas aeruginosa. BMC Mol. Biol. 9, 20 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Aparicio, T., de Lorenzo, V. & Martinez-Garcia, E. CRISPR/Cas9-based counterselection boosts recombineering efficiency in Pseudomonas putida. Biotechnol. J. 13, e1700161 (2018).

    Article  PubMed  Google Scholar 

  22. Aparicio, T., de Lorenzo, V. & Martinez-Garcia, E. CRISPR/Cas9-enhanced ssDNA recombineering for Pseudomonas putida. Microb. Biotechnol. 12, 1076–1089 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jeske, A., Arce-Rodriguez, A., Thoming, J. G., Tomasch, J. & Haussler, S. Evolution of biofilm-adapted gene expression profiles in lasR-deficient clinical Pseudomonas aeruginosa isolates. NPJ Biofilms Microbiomes 8, 6 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Calero, P. & Nikel, P. I. Chasing bacterial chassis for metabolic engineering: a perspective review from classical to non-traditional microorganisms. Microb. Biotechnol. 12, 98–124 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Xin, X. F., Kvitko, B. & He, S. Y. Pseudomonas syringae: what it takes to be a pathogen. Nat. Rev. Microbiol. 16, 316–328 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen, W. et al. CRISPR/Cas9-based genome editing in Pseudomonas aeruginosa and cytidine deaminase-mediated base editing in Pseudomonas species. iScience 6, 222–231 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ricaurte, D. E. et al. A standardized workflow for surveying recombinases expands bacterial genome-editing capabilities. Microb. Biotechnol. 11, 176–188 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Volke, D. C., Martino, R. A., Kozaeva, E., Smania, A. M. & Nikel, P. I. Modular (de)construction of complex bacterial phenotypes by CRISPR/nCas9-assisted, multiplex cytidine base-editing. Nat. Commun. 13, 3026 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Konstantakos, V., Nentidis, A., Krithara, A. & Paliouras, G. CRISPR–Cas9 gRNA efficiency prediction: an overview of predictive tools and the role of deep learning. Nucleic Acids Res. 50, 3616–3637 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Blin, K., Pedersen, L. E., Weber, T. & Lee, S. Y. CRISPy-web: an online resource to design sgRNAs for CRISPR applications. Synth. Syst. Biotechnol. 1, 118–121 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Concordet, J. P. & Haeussler, M. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 46, W242–W245 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Aparicio, T. et al. Mismatch repair hierarchy of Pseudomonas putida revealed by mutagenic ssDNA recombineering of the pyrF gene. Environ. Microbiol. 22, 45–58 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Silva-Rocha, R. et al. The Standard European Vector Architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypes. Nucleic Acids Res. 41, D666–D675 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Martinez-Garcia, E. et al. SEVA 4.0: an update of the Standard European Vector Architecture database for advanced analysis and programming of bacterial phenotypes. Nucleic Acids Res. 51, D1558–D1567 (2023).

    Article  PubMed  Google Scholar 

  35. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fu, Y., Sander, J. D., Reyon, D., Cascio, V. M. & Joung, J. K. Improving CRISPR–Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 32, 279–284 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ran, F. A. et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154, 1380–1389 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang, T., Wei, J. J., Sabatini, D. M. & Lander, E. S. Genetic screens in human cells using the CRISPR–Cas9 system. Science 343, 80–84 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Lin, Y. et al. CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Res. 42, 7473–7485 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xu, H. et al. Sequence determinants of improved CRISPR sgRNA design. Genome Res. 25, 1147–1157 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Doench, J. G. et al. Rational design of highly active sgRNAs for CRISPR–Cas9-mediated gene inactivation. Nat. Biotechnol. 32, 1262–1267 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liang, G., Zhang, H., Lou, D. & Yu, D. Selection of highly efficient sgRNAs for CRISPR/Cas9-based plant genome editing. Sci. Rep. 6, 21451 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ellis, H. M., Yu, D., DiTizio, T. & Court, D. L. High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proc. Natl Acad. Sci. USA 98, 6742–6746 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shen, H., Han, F., Lin, Y. & Yu, W. A high efficient electroporation of Pseudomonas sp. QDA pretreated with alginate lyase. Enzym. Microb. Technol. 39, 677–682 (2006).

    Article  CAS  Google Scholar 

  45. Hanahan, D. & Meselson, M. in Methods in Enzymology (eds. Wu, R. et al.) Vol. 100, 333–342 (Academic Press, 1983).

  46. Rahme, L. G. et al. Common virulence factors for bacterial pathogenicity in plants and animals. Science 268, 1899–1902 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. Holloway, B. W. Genetic recombination in Pseudomonas aeruginosa. Microbiology 13, 572–581 (1955).

    Article  CAS  Google Scholar 

  48. Hornischer, K. et al. BACTOME—a reference database to explore the sequence- and gene expression-variation landscape of Pseudomonas aeruginosa clinical isolates. Nucleic Acids Res. 47, D716–D720 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Boyer, H. W. & Roulland-Dussoix, D. A complementation analysis of the restriction and modification of DNA in Escherichia coli. J. Mol. Biol. 41, 459–472 (1969).

    Article  CAS  PubMed  Google Scholar 

  50. Keen, N. T., Tamaki, S., Kobayashi, D. & Trollinger, D. Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Gene 70, 191–197 (1988).

    Article  CAS  PubMed  Google Scholar 

  51. Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Winsor, G. L. et al. Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database. Nucleic Acids Res. 44, D646–D653 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Benson, D. A. et al. GenBank. Nucleic Acids Res 41, D36–D42 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Poulsen, B. E. et al. Defining the core essential genome of Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 116, 10072–10080 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liberati, N. T. et al. An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc. Natl Acad. Sci. USA 103, 2833–2838 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jacobs, M. A. et al. Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 100, 14339–14344 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hofacker, I. L. Vienna RNA secondary structure server. Nucleic Acids Res. 31, 3429–3431 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kessler, B., de Lorenzo, V. & Timmis, K. N. A general system to integrate lacZ fusions into the chromosomes of gram-negative eubacteria: regulation of the Pm promoter of the TOL plasmid studied with all controlling elements in monocopy. Mol. Gen. Genet. 233, 293–301 (1992).

    Article  CAS  PubMed  Google Scholar 

  59. Simon, R., Priefer, U. & Pühler, A. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Nat. Biotechnol. 1, 784–791 (1983).

    Article  CAS  Google Scholar 

  60. Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: A Laboratory Manual 2nd edn (Cold Spring Harbor Laboratory, 1989).

  61. Roland, K., Curtiss, R. 3rd & Sizemore, D. Construction and evaluation of a delta cya delta crp Salmonella typhimurium strain expressing avian pathogenic Escherichia coli O78 LPS as a vaccine to prevent airsacculitis in chickens. Avian Dis. 43, 429–441 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Choi, K. H., Kumar, A. & Schweizer, H. P. A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: application for DNA fragment transfer between chromosomes and plasmid transformation. J. Microbiol. Methods 64, 391–397 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank V. de Lorenzo and E. Martinez-García for their inspiring work in recombineering methods and for sharing valuable materials. This work was supported by grants from the European Union (ERC Consolidator grant COMBAT 724290) and the excellence cluster RESIST (Resolving Infection Susceptibility; EXC 2155—project number 390874280). Furthermore, S.H. received funding from the German Research Foundation (Deutsche Forschungsgemeinschaft grant SPP 1879), the Lower Saxony Ministry for Science and Culture (BacData grant ZN3428) and the Novo Nordisk Foundation (grant NNF18OC0033946). P.I.N. received financial support from the Novo Nordisk Foundation through grants NNF20CC0035580, LiFe (NNF18OC0034818) and TARGET (NNF21OC0067996), the Danish Council for Independent Research (SWEET, DFF–research project 8021-00039B) and the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement no. 814418 (SinFonia). Biorender (Biorender.com) was used to create the figures.

Author information

Authors and Affiliations

Authors

Contributions

A.A.-R., S.H. and P.I.N. designed the protocol. P.I.N. developed the original CRISPR–Cas9-bearing plasmid. D.P., N.O.G., A.A.-R., A.N. and A.M. constructed the new vector set for the toolkit. D.P., A.A.-R., N.O.G., A.N., A.M. and F.A.-R. performed the experiments and validated the protocol in laboratory strains. M.G. and D.P. performed the experiments in clinical isolates. A.A.-R., S.H. and P.I.N. supervised the project. A.A.-R., D.P, N.O.G. and S.H. wrote the protocol.

Corresponding authors

Correspondence to Susanne Häussler or Alejandro Arce-Rodriguez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Andrea Smania and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Jeske, A. et al. NPJ Biofilms Microbiomes 8, 6 (2022): https://doi.org/10.1038/s41522-022-00268-1

Borgert, S. R. et al. Nat. Commun. 13, 7402 (2022): https://doi.org/10.1038/s41467-022-35030-w

Supplementary information

Supplementary Table 1

Oligonucleotides used in this study.

Source data

Source Data Fig. 4

Unprocessed agarose gels for Fig. c–e.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pankratz, D., Gomez, N.O., Nielsen, A. et al. An expanded CRISPR–Cas9-assisted recombineering toolkit for engineering genetically intractable Pseudomonas aeruginosa isolates. Nat Protoc 18, 3253–3288 (2023). https://doi.org/10.1038/s41596-023-00882-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-023-00882-z

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology