Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Integrated crop–livestock–bioenergy system brings co-benefits and trade-offs in mitigating the environmental impacts of Chinese agriculture

Abstract

Agricultural bioenergy utilization relies on crop and livestock production, favouring an integrated crop–livestock–bioenergy production model. Yet the integrated system’s exact contribution to mitigating various environmental burdens from the crop production system and livestock production system remains unclear. Here we inventory the environmental impacts of each process in three subsystems at both national and regional scales in China, ultimately identifying key processes and impact categories. The co-benefits and trade-offs in nine impact categories are investigated by comparing the life cycle impacts in the background scenario (crop production system + livestock production system) and foreground scenario (integrated system). Freshwater eutrophication is the most serious impact category in both scenarios. Except terrestrial acidification, the mitigation effects on the other eight impact categories vary from 1.8% to 94.8%, attributed to fossil energy and chemical fertilizer offsets. Environmental trade-offs should be deliberated when expanding bioenergy utilization in the identified critical regions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of methodological principles.
Fig. 2: Environmental impacts of the CPS and LPS, and the constituent processes at the national scale.
Fig. 3: Key environmental impact intensities of the CPS and LPS at the regional scale.
Fig. 4: Straw flow and manure flow at the national scale.
Fig. 5: Amount of straw and manure utilized for bioenergy production.
Fig. 6: Environmental impacts in the background scenario and foreground scenario, and the mitigation or intensification effects of integrating three systems at the national scale.
Fig. 7: Mitigation or intensification effects on nine categories of environmental impacts at the regional scale.

Similar content being viewed by others

Data availability

All the data used in this study are publicly available; see Supplementary Data and Supplementary Information for descriptions of the source data. Source data are provided with this paper.

Code availability

The custom code and algorithm used for this study are available in Methods and Supplementary Information.

References

  1. Crippa, M. et al. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2, 198–209 (2021).

    Article  CAS  Google Scholar 

  2. Gil, J. D. B. et al. Reconciling global sustainability targets and local action for food production and climate change mitigation. Glob. Environ. Change 59, 101983 (2019).

    Article  Google Scholar 

  3. Clark, M. A. et al. Global food system emissions could preclude achieving the 1.5 °C and 2 °C climate change targets. Science 370, 705–708 (2020).

    Article  ADS  CAS  Google Scholar 

  4. Bai, Z. H. et al. Nitrogen, phosphorus, and potassium flows through the manure management chain in China. Environ. Sci. Technol. 50, 13409–13418 (2016).

    Article  ADS  CAS  Google Scholar 

  5. Usubiaga-Liano, A., Behrens, P. & Daiogloes, V. Energy use in the global food system. J. Ind. Ecol. 24, 830–840 (2020).

    Article  Google Scholar 

  6. Hu, Y. et al. Food production in China requires intensified measures to be consistent with national and provincial environmental boundaries. Nat. Food 1, 572–582 (2020).

    Article  Google Scholar 

  7. FAOSTAT. Food and agriculture data http://www.fao.org/faostat/en/ (2021).

  8. Yu, C. et al. Managing nitrogen to restore water quality in China. Nature 567, 516–520 (2019).

    Article  ADS  CAS  Google Scholar 

  9. Ma, L. et al. Exploring future food provision scenarios for China. Environ. Sci. Technol. 53, 1385–1393 (2019).

    Article  ADS  CAS  Google Scholar 

  10. Rennie, T. J., Grant, B. B., Gordon, R. J., Smith, W. N. & VanderZaag, A. C. Regional climate influences manure temperature and methane emissions—a pan-Canadian modelling assessment. Sci. Total Environ. 750, 142278 (2021).

    Article  ADS  CAS  Google Scholar 

  11. Bai, Z. H. et al. China’s livestock transition: driving forces, impacts, and consequences. Sci. Adv. 4, eaar8534 (2018).

    Article  ADS  CAS  Google Scholar 

  12. Leip, A. et al. Impacts of European livestock production: nitrogen, sulphur, phosphorus and greenhouse gas emissions, land-use, water eutrophication and biodiversity. Environ. Res. Lett. 10, 115004 (2015).

    Article  ADS  Google Scholar 

  13. Bai, Z. H. et al. Changes in pig production in China and their effects on nitrogen and phosphorus use and losses. Environ. Sci. Technol. 48, 12742–12749 (2014).

    Article  ADS  CAS  Google Scholar 

  14. Wu, H. et al. The influence of crop and chemical fertilizer combinations on greenhouse gas emissions: a partial life-cycle assessment of fertilizer production and use in China. Resour. Conserv. Recycl. 168, 105303 (2021).

    Article  CAS  Google Scholar 

  15. Prechsl, U. E. et al. Assessing the environmental impacts of cropping systems and cover crops: life cycle assessment of FAST, a long-term arable farming field experiment. Agric. Syst. 157, 39–50 (2017).

    Article  Google Scholar 

  16. Jin, S. et al. Decoupling livestock and crop production at the household level in China. Nat. Sustain. 4, 48–55 (2021).

    Article  Google Scholar 

  17. Ma, Y. et al. Cooperation between specialized livestock and crop farms can reduce environmental footprints and increase net profits in livestock production. J. Environ. Manag. 302, 113960 (2022).

    Article  CAS  Google Scholar 

  18. Liu, B. & Rajagopal, D. Life-cycle energy and climate benefits of energy recovery from wastes and biomass residues in the United States. Nat. Energy 4, 700–708 (2019).

    Article  ADS  CAS  Google Scholar 

  19. Kalt, G. et al. Greenhouse gas implications of mobilizing agricultural biomass for energy: a reassessment of global potentials in 2050 under different food-system pathways. Environ. Res. Lett. 15, 034066 (2020).

    Article  ADS  Google Scholar 

  20. Zhang, L. B., Liu, Y. Q. & Hao, L. Contributions of open crop straw burning emissions to PM2.5 concentrations in China. Environ. Res. Lett. 11, 014014 (2016).

    Article  ADS  Google Scholar 

  21. Song, J. N., Yang, W., Higano, Y. & Wang, X. E. Dynamic integrated assessment of bioenergy technologies for energy production utilizing agricultural residues: an input-output approach. Appl. Energy 158, 178–189 (2015).

    Article  CAS  Google Scholar 

  22. Wang, B. et al. Selecting sustainable energy conversion technologies for agricultural residues: a fuzzy AHP-VIKOR based prioritization from life cycle perspective. Resour. Conserv. Recycl. 142, 78–87 (2019).

    Article  Google Scholar 

  23. Khoshnevisan, B. et al. A critical review on livestock manure biorefinery technologies: sustainability, challenges, and future perspectives. Renew. Sust. Energ. Rev. 135, 110033 (2021).

    Article  Google Scholar 

  24. Cavalli, D. et al. Nitrogen fertilizer replacement value of undigested liquid cattle manure and digestates. Eur. J. Agron. 73, 34–41 (2016).

    Article  Google Scholar 

  25. Wang, X. E., Li, K. X., Song, J. N., Duan, H. Y. & Wang, S. Integrated assessment of straw utilization for energy production from views of regional energy, environmental and socioeconomic benefits. J. Clean Prod. 190, 787–798 (2018).

    Article  CAS  Google Scholar 

  26. Hou, Y., Velthof, G. L., Lesschen, J. P., Staritsky, I. G. & Oenema, O. Nutrient recovery and emissions of ammonia, nitrous oxide, and methane from animal manure in Europe: effects of manure treatment technologies. Environ. Sci. Technol. 51, 375–383 (2017).

    Article  ADS  CAS  Google Scholar 

  27. Xing, J. H., Song, J. N., Ren, J. Z., Yang, W. & Duan, H. Y. Regional integrative benefits of converting livestock excrements to energy in China: an elaborative assessment from life cycle perspective. J. Clean Prod. 275, 122470 (2020).

    Article  CAS  Google Scholar 

  28. Aguirre-Villegas, H. A., Larson, R. & Reinemann, D. J. From waste-to-worth: energy, emissions, and nutrient implications of manure processing pathways. Biofuels, Bioprod. Bioref. 8, 770–793 (2014).

    Article  CAS  Google Scholar 

  29. Zhang, Y. Z. et al. Environmental sustainability assessment of pig manure mono- and co-digestion and dynamic land application of the digestate. Renew. Sust. Energ. Rev. 137, 110476 (2021).

    Article  CAS  Google Scholar 

  30. Humpenoder, F. et al. Large-scale bioenergy production: how to resolve sustainability trade-offs? Environ. Res. Lett. 13, 024011 (2018).

    Article  ADS  Google Scholar 

  31. Acosta-Michlik, L., Lucht, W., Bondeau, A. & Beringer, T. Integrated assessment of sustainability trade-offs and pathways for global bioenergy production: framing a novel hybrid approach. Renew. Sust. Energ. Rev. 15, 2791–2809 (2011).

    Article  Google Scholar 

  32. Acosta, L. A. et al. Sustainability trade-offs in bioenergy development in the Philippines: an application of conjoint analysis. Biomass Bioenerg. 64, 20–41 (2014).

    Article  Google Scholar 

  33. Mouratiadou, I. et al. Sustainable intensification of crop residue exploitation for bioenergy: opportunities and challenges. GCB Bioenergy 12, 71–89 (2020).

    Article  CAS  Google Scholar 

  34. Yang, L. et al. Shifting from fossil-based economy to bio-based economy: status quo, challenges, and prospects. Energy 228, 120533 (2021).

    Article  Google Scholar 

  35. Zhu, Z. et al. Integrated livestock sector nitrogen pollution abatement measures could generate net benefits for human and ecosystem health in China. Nat. Food 3, 161–168 (2022).

    Article  Google Scholar 

  36. Hitaj, C., Rehkamp, S., Canning, P. & Peters, C. J. Greenhouse gas emissions in the United States food system: current and healthy diet scenarios. Environ. Sci. Technol. 53, 5493–5503 (2019).

    Article  ADS  CAS  Google Scholar 

  37. Laurent, A. et al. Methodological review and detailed guidance for the life cycle interpretation phase. J. Ind. Ecol. 24, 986–1003 (2020).

    Article  Google Scholar 

  38. Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).

    Article  ADS  CAS  Google Scholar 

  39. Rasmussen, L. V., Hall, C., Vansant, E. C., den Braber, B. & Olesen, R. S. Rethinking the approach of a global shift toward plant-based diets. One Earth 4, 1201–1204 (2021).

    Article  ADS  Google Scholar 

  40. Davis, K. F., Rulli, M. C., Seveso, A. & D’Odorico, P. Increased food production and reduced water use through optimized crop distribution. Nat. Geosci. 10, 919–924 (2017).

    Article  ADS  CAS  Google Scholar 

  41. Nicholson, F. et al. Nitrogen losses to the environment following food-based digestate and compost applications to agricultural land. Environ. Pollut. 228, 504–516 (2017).

    Article  CAS  Google Scholar 

  42. Shu, K. S., Schneider, U. A. & Scheffran, J. Optimizing the bioenergy industry infrastructure: transportation networks and bioenergy plant locations. Appl. Energy 192, 247–261 (2017).

    Article  Google Scholar 

  43. Wei, S. et al. Psychrophilic anaerobic co-digestion of highland barley straw with two animal manures at high altitude for enhancing biogas production. Energy Convers. Manag. 88, 40–48 (2014).

    Article  CAS  Google Scholar 

  44. Wang, Y., Wu, X. H., Tong, X. G., Li, T. T. & Wu, F. Q. Life cycle assessment of large-scale and household biogas plants in northwest China. J. Clean Prod. 192, 221–235 (2018).

    Article  CAS  Google Scholar 

  45. West, P. C. et al. Leverage points for improving global food security and the environment. Science 345, 325–328 (2014).

    Article  ADS  CAS  Google Scholar 

  46. Strzalka, R., Schneider, D. & Eicker, U. Current status of bioenergy technologies in Germany. Renew. Sust. Energ. Rev. 72, 801–820 (2017).

    Article  CAS  Google Scholar 

  47. Nicholson, F. A., Bhogal, A., Rollett, A., Taylor, M. & Williams, J. R. Precision application techniques reduce ammonia emissions following food-based digestate applications to grassland. Nutr. Cycl. Agroecosys. 110, 151–159 (2018).

    Article  CAS  Google Scholar 

  48. Zhao, B., Shuai, C., Hou, P., Qu, S. & Xu, M. Estimation of unit process data for life cycle assessment using a decision tree-based approach. Environ. Sci. Technol. 55, 8439–8446 (2021).

    Article  ADS  CAS  Google Scholar 

  49. Hu, Y. C. et al. Evaluating agricultural grey water footprint with modeled nitrogen emission data. Resour. Conserv. Recycl. 138, 64–73 (2018).

    Article  Google Scholar 

  50. Liu, W. R. et al. Comparisons of pollution characteristics, emission situations, and mass loads for heavy metals in the manures of different livestock and poultry in China. Sci. Total Environ. 734, 139023 (2020).

    Article  ADS  CAS  Google Scholar 

  51. Song, J. N., Li, K. X., Ren, J. Z., Yang, W. & Liu, X. Y. Holistic suitability for regional biomass power generation development in China: an application of matter-element extension model. J. Environ. Manag. 276, 111294 (2020).

    Article  Google Scholar 

  52. Song, J., Yang, W., Higano, Y. & Wang, X. E. Modeling the development and utilization of bioenergy and exploring the environmental economic benefits. Energy Convers. Manag. 103, 836–846 (2015).

    Article  Google Scholar 

  53. Li, Y. Y., Jin, Y. Y., Borrion, A. & Li, H. L. Current status of food waste generation and management in China. Bioresour. Technol. 273, 654–665 (2019).

    Article  CAS  Google Scholar 

  54. Xu, Z. C. et al. Assessing progress towards sustainable development over space and time. Nature 577, 74–78 (2020).

    Article  ADS  CAS  Google Scholar 

  55. Cavalett, O. & Cherubini, F. Contribution of jet fuel from forest residues to multiple Sustainable Development Goals. Nat. Sustain. 1, 799–807 (2018).

    Article  Google Scholar 

  56. Yang, Q. et al. Prospective contributions of biomass pyrolysis to China’s 2050 carbon reduction and renewable energy goals. Nat. Commun. 12, 1698 (2021).

    Article  ADS  CAS  Google Scholar 

  57. Huang, B. J. et al. Building material use and associated environmental impacts in China 2000-2015. Environ. Sci. Technol. 52, 14006–14014 (2018).

    Article  ADS  CAS  Google Scholar 

  58. Zhao, H. et al. Comparative life cycle assessment of emergency disposal scenarios for medical waste during the COVID-19 pandemic in China. Waste Manag. 126, 388–399 (2021).

    Article  CAS  Google Scholar 

  59. Liang, S. et al. Quantifying the urban food-energy-water nexus: the case of the Detroit metropolitan area. Environ. Sci. Technol. 53, 779–788 (2019).

    Article  ADS  CAS  Google Scholar 

  60. Bai, Y. Y. et al. Water footprint coupled economic impact assessment for maize production in China. Sci. Total Environ. 752, 141963 (2021).

    Article  ADS  CAS  Google Scholar 

  61. Huijbregts, M. A. J. et al. ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 22, 138–147 (2017).

    Article  Google Scholar 

  62. ISO. ISO 14044: 2006 environmental management—life cycle assessment—requirements and guidelines https://www.iso.org/standard/38498.html (2016).

  63. National Institute for Public Health and the Environment, Ministry of Health, Welfare and Sport, Netherlands. Normalization scores ReCiPe 2016 https://www.rivm.nl/en/documenten/normalization-scores-recipe-2016 (2020).

  64. OpenLCA Nexus. Ecoinvent database https://nexus.openlca.org/database/ecoinvent (2021).

  65. National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook on Agriculture (China Statistics Press, Beijing, 2020).

  66. National Development and Reform Commission of the People’s Republic of China. National Cost Benefit Compilation of Agricultural Products (China Statistics Press, Beijing, 2021).

  67. Ministry of Ecology and Environment of the People’s Republic of China. National guideline for the compilation of emission inventory of atmospheric ammonia sources http://www.mee.gov.cn/gkml/hbb/bgg/201408/t20140828_288364.htm (2014).

  68. IPCC. The emission factor database https://www.ipcc-nggip.iges.or.jp/EFDB/main.php (2021).

  69. Cao, C. J. et al. Incorporating health co-benefits into regional carbon emission reduction policy making: a case study of China’s power sector. Appl. Energy 253, 113498 (2019).

    Article  CAS  Google Scholar 

  70. Wang, M. et al. Hotspots for nitrogen and phosphorus losses from food production in China: a county-scale analysis. Environ. Sci. Technol. 52, 5782–5791 (2018).

    Article  ADS  CAS  Google Scholar 

  71. Gu, B. J., Ju, X. T., Chang, J., Ge, Y. & Vitousek, P. M. Integrated reactive nitrogen budgets and future trends in China. Proc. Natl Acad. Sci. USA 112, 8792–8797 (2015).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (no. 41801199) (J.S.) and grants from the Research Centre for Resources Engineering towards Carbon Neutrality (no. P0043023) and the Research Institute for Advanced Manufacturing, The Hong Kong Polytechnic University (no. P0041367) (J.R.).

Author information

Authors and Affiliations

Authors

Contributions

J.S. and W.Y. conceptualized and designed the study. J.X. and C.L. collected the original data, developed the life cycle datasets and compiled the figures. J.X., J.S., W.Y., H.D., H.Y. and J.R. interpreted the data and analysed the results. J.X. drafted the manuscript, and J.S., W.Y. and J.R. reviewed the manuscript and contributed to the revisions.

Corresponding authors

Correspondence to Junnian Song, Wei Yang or Jingzheng Ren.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Food thanks Gerd Angelkorte and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, data descriptions, Figs. 1–7, Tables 1–32 and references.

Reporting Summary

Supplementary Data 1

Supplementary data on life cycle inventory of GHGs and pollutants of crop production and livestock production at provincial scale in China (2019).

Source data

Source Data Fig. 2

Source data from results to generate the bar charts in Fig. 2.

Source Data Fig. 3

Source data from results to generate the dot plots in Fig. 3.

Source Data Fig. 4

Source data from results to generate the Sankey diagrams in Fig. 4.

Source Data Fig. 5

Source data from results to generate the maps in Fig. 5.

Source Data Fig. 6

Source data from results to generate the bar charts in Fig. 6.

Source Data Fig. 7

Source data from results to generate the heat map in Fig. 7.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, J., Song, J., Liu, C. et al. Integrated crop–livestock–bioenergy system brings co-benefits and trade-offs in mitigating the environmental impacts of Chinese agriculture. Nat Food 3, 1052–1064 (2022). https://doi.org/10.1038/s43016-022-00649-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-022-00649-x

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene