Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeting dysregulated phago-/auto-lysosomes in Sertoli cells to ameliorate late-onset hypogonadism

Abstract

Age-related changes in testicular function can impact health and well-being. The mechanisms underlying age-related testicular dysfunction, such as late-onset hypogonadism (LOH), remain incompletely understood. Using single-cell RNA sequencing on human testes with LOH, we delineated Sertoli cells (SCs) as pivotal metabolic coordinators within the testicular microenvironment. In particular, lysosomal acidity probing revealed compromised degradative capacity in aged SCs, hindering autophagy and phagocytic flux. Consequently, SCs accumulated metabolites, including cholesterol, and have increased inflammatory gene expression; thus, we termed these cells as phago-/auto-lysosomal deregulated SCs. Exposure to a high-fat diet-induced phago-/auto-lysosomal dysregulated-like SCs, recapitulating LOH features in mice. Notably, efferent ductular injection and systemic TRPML1 agonist administration restored lysosomal function, normalizing testosterone deficiency and associated abnormalities in high-fat diet-induced LOH mice. Our findings underscore the central role of SCs in testis aging, presenting a promising therapeutic avenue for LOH.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SC aging in individuals with LOH revealed by scRNA transcriptome analysis.
Fig. 2: SCs in individuals with LOH were overwhelmingly phagocytic with dysregulated lysosomal acidity.
Fig. 3: Low degradation efficiency of PALD SCs.
Fig. 4: HFD stress accelerated the emergence of PALD-like SCs and the LOH phenotypes.
Fig. 5: TRPML agonist ML-SA1 restores lysosomal function in PALD SCs.
Fig. 6: EDI treatment of ML-SA1 ameliorated the HFD-induced LOH-like phenotype in mice.
Fig. 7: Systemic administration of ML-SA1 ameliorates HFD-LOH without adverse effects on spermatogenesis by TRT.

Similar content being viewed by others

Data availability

scRNA-seq data of this study can be found in the NCBI under accession numbers GSE149512 and GSE215754. Bulk RNA-seq data used in this study is available in the NCBI under accession number GSE218384. Source data are provided with this paper.

Code availability

All code associated with this paper and the gene annotation list have been uploaded to GitHub (https://github.com/zlyingithub/human-testis-aging-atlas)55.

References

  1. Wu, F. C. et al. Identification of late-onset hypogonadism in middle-aged and elderly men. N. Engl. J. Med. 363, 123–135 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Wang, C. et al. Investigation, treatment and monitoring of late-onset hypogonadism in males: ISA, ISSAM, EAU, EAA and ASA recommendations. Eur. J. Endocrinol. 159, 507–514 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nie, X. et al. Single-cell analysis of human testis aging and correlation with elevated body mass index. Dev. Cell 57, 1160–1176 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Franca, L. R., Hess, R. A., Dufour, J. M., Hofmann, M. C. & Griswold, M. D. The Sertoli cell: one hundred fifty years of beauty and plasticity. Andrology 4, 189–212 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mruk, D. D. & Cheng, C. Y. Sertoli–Sertoli and Sertoli–germ cell interactions and their significance in germ cell movement in the seminiferous epithelium during spermatogenesis. Endocr. Rev. 25, 747–806 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Rebourcet, D. et al. Sertoli cells control peritubular myoid cell fate and support adult Leydig cell development in the prepubertal testis. Development 141, 2139–2149 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rato, L. et al. Metabolic regulation is important for spermatogenesis. Nat. Rev. Urol. 9, 330–338 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Robertson, K. M. et al. The liver X receptor-beta is essential for maintaining cholesterol homeostasis in the testis. Endocrinology 146, 2519–2530 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Traish, A. M., Saad, F. & Guay, A. The dark side of testosterone deficiency: II. Type 2 diabetes and insulin resistance. J. Androl. 30, 23–32 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Traish, A. M., Saad, F., Feeley, R. J. & Guay, A. The dark side of testosterone deficiency: III. Cardiovascular disease. J. Androl. 30, 477–494 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Khaw, K. T. et al. Endogenous testosterone and mortality due to all causes, cardiovascular disease, and cancer in men: European prospective investigation into cancer in Norfolk (EPIC-Norfolk) Prospective Population Study. Circulation 116, 2694–2701 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Khera, M. et al. Adult-onset hypogonadism. Mayo Clin. Proc. 91, 908–926 (2016).

    Article  PubMed  Google Scholar 

  13. Corona, G., Vignozzi, L., Sforza, A., Mannucci, E. & Maggi, M. Obesity and late-onset hypogonadism. Mol. Cell. Endocrinol. 418, 120–133 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Rhoden, E. L. & Morgentaler, A. Risks of testosterone-replacement therapy and recommendations for monitoring. N. Engl. J. Med. 350, 482–492 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Corona, G., Vignozzi, L., Sforza, A. & Maggi, M. Risks and benefits of late onset hypogonadism treatment: an expert opinion. World J. Mens Health 31, 103–125 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Papadopoulos, V., Kamtchouing, P., Drosdowsky, M. A., Hochereau de Reviers, M. T. & Carreau, S. Adult rat Sertoli cells secrete a factor or factors which modulate Leydig cell function. J. Endocrinol. 114, 459–467 (1987).

    Article  CAS  PubMed  Google Scholar 

  17. Yoshida, K. & Oshima, H. The regulation of testicular function by paracrine mechanism. Nihon Naibunpi Gakkai Zasshi 70, 1047–1054 (1994).

    CAS  PubMed  Google Scholar 

  18. Glass, C. K. & Olefsky, J. M. Inflammation and lipid signaling in the etiology of insulin resistance. Cell Metab. 15, 635–645 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Krahmer, N., Farese, R. V.Jr & Walther, T. C. Balancing the fat: lipid droplets and human disease. EMBO Mol. Med. 5, 973–983 (2013).

    Article  PubMed  Google Scholar 

  20. Romao, S. & Munz, C. LC3-associated phagocytosis. Autophagy 10, 526–528 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang, C. et al. miR-202-3p regulates Sertoli cell proliferation, synthesis function, and apoptosis by targeting LRP6 and cyclin D1 of Wnt/beta-catenin signaling. Mol. Ther. Nucleic Acids 14, 1–19 (2019).

    Article  PubMed  Google Scholar 

  22. Abu-Remaileh, M. et al. Lysosomal metabolomics reveals V-ATPase- and mTOR-dependent regulation of amino acid efflux from lysosomes. Science 358, 807–813 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu, C. et al. Autophagy is required for ectoplasmic specialization assembly in Sertoli cells. Autophagy 12, 814–832 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Aman, Y. et al. Autophagy in healthy aging and disease. Nat. Aging 1, 634–650 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lee, J. H. et al. Faulty autolysosome acidification in Alzheimer’s disease mouse models induces autophagic build-up of Abeta in neurons, yielding senile plaques. Nat. Neurosci. 25, 688–701 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kimura, S., Noda, T. & Yoshimori, T. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 3, 452–460 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Inomata, M. et al. Macrophage LC3-associated phagocytosis is an immune defense against Streptococcus pneumoniae that diminishes with host aging. Proc. Natl Acad. Sci. USA 117, 33561–33569 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhao, W., Su, J., Wang, Y., Qian, T. & Liu, Y. Functional importance of palmitoyl protein thioesterase 1 (PPT1) expression by Sertoli cells in mediating cholesterol metabolism and maintenance of sperm quality. Mol. Reprod. Dev. 86, 984–998 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Nakanishi, Y. & Shiratsuchi, A. Phagocytic removal of apoptotic spermatogenic cells by Sertoli cells: mechanisms and consequences. Biol. Pharm. Bull. 27, 13–16 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Marschallinger, J. et al. Lipid-droplet-accumulating microglia represent a dysfunctional and proinflammatory state in the aging brain. Nat. Neurosci. 23, 194–208 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zeng, J. et al. Restoration of lysosomal acidification rescues autophagy and metabolic dysfunction in non-alcoholic fatty liver disease. Nat. Commun. 14, 2573 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yoshimori, T., Yamamoto, A., Moriyama, Y., Futai, M. & Tashiro, Y. Bafilomycin A1, a specific inhibitor of vacuolar-type H+-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J. Biol. Chem. 266, 17707–17712 (1991).

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, S. X. et al. Hypothalamic dopamine neurons motivate mating through persistent cAMP signalling. Nature 597, 245–249 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yu, L. et al. Small-molecule activation of lysosomal TRP channels ameliorates Duchenne muscular dystrophy in mouse models. Sci. Adv. 6, eaaz2736 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Busada, J. T., Niedenberger, B. A., Velte, E. K., Keiper, B. D. & Geyer, C. B. Mammalian target of rapamycin complex 1 (mTORC1) Is required for mouse spermatogonial differentiation in vivo. Dev. Biol. 407, 90–102 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vander Haar, E., Lee, S. I., Bandhakavi, S., Griffin, T. J. & Kim, D. H. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat. Cell Biol. 9, 316–323 (2007).

    Article  Google Scholar 

  37. Wang, H. & Eckel, R. H. Lipoprotein lipase: from gene to obesity. Am. J. Physiol. Endocrinol. Metab. 297, E271–E288 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Selva, D. M. et al. The ATP-binding cassette transporter 1 mediates lipid efflux from Sertoli cells and influences male fertility. J. Lipid Res. 45, 1040–1050 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Jeon, H. & Blacklow, S. C. Structure and physiologic function of the low-density lipoprotein receptor. Annu. Rev. Biochem. 74, 535–562 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Roberts, M. A. & Olzmann, J. A. Protein quality control and lipid droplet metabolism. Annu. Rev. Cell Dev. Biol. 36, 115–139 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schultz, J. R. et al. Role of LXRs in control of lipogenesis. Genes Dev. 14, 2831–2838 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sebo, Z. L. & Rodeheffer, M. S. Testosterone metabolites differentially regulate obesogenesis and fat distribution. Mol. Metab. 44, 101141 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Ioannou, M. S. et al. Neuron–astrocyte metabolic coupling protects against activity-induced fatty acid toxicity. Cell 177, 1522–1535 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Olzmann, J. A. & Carvalho, P. Dynamics and functions of lipid droplets. Nat. Rev. Mol. Cell Biol. 20, 137–155 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jesus, T. T. et al. Mammalian target of rapamycin controls glucose consumption and redox balance in human Sertoli cells. Fertil. Steril. 105, 825–833 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Somogyi, A. et al. The synthetic TRPML1 agonist ML-SA1 rescues Alzheimer-related alterations of the endosomal-autophagic-lysosomal system. J. Cell Sci. 136, jcs259875 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang, M. et al. Transplanted human p75-positive stem Leydig cells replace disrupted Leydig cells for testosterone production. Cell Death Dis. 8, e3123 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhao, L. et al. Single-cell analysis of developing and azoospermia human testicles reveals central role of Sertoli cells. Nat. Commun. 11, 5683 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Arato, I. et al. In vitro’ effect of different follicle-stimulating hormone preparations on Sertoli cells: toward a personalized treatment for male infertility. Front. Endocrinol. 11, 401 (2020).

    Article  Google Scholar 

  50. Jin, S. et al. Inference and analysis of cell–cell communication using CellChat. Nat. Commun. 12, 1088 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Handelsman, D. J. et al. Measurement of testosterone by immunoassays and mass spectrometry in mouse serum, testicular, and ovarian extracts. Endocrinology 156, 400–405 (2015).

    Article  PubMed  Google Scholar 

  52. Sun, Y. et al. Lysosome activity is modulated by multiple longevity pathways and is important for lifespan extension in C. elegans. Elife 9, e55745 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Geng, J. et al. DRAM1 plays a tumor suppressor role in NSCLC cells by promoting lysosomal degradation of EGFR. Cell Death Dis. 11, 768 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sato, T., Katagiri, K., Kubota, Y. & Ogawa, T. In vitro sperm production from mouse spermatogonial stem cell lines using an organ culture method. Nat. Protoc. 8, 2098–2104 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Zhao, L. Human testis aging atlas. GitHub https://github.com/zlyingithub/human-testis-aging-atlas (2022).

Download references

Acknowledgements

We express our gratitude to H.M. Wang (Institute of Zoology, CAS), L.S. Li (Shanghai Advanced Research Institute, CAS), and X.C. Wang (Institute of Biophysics, CAS) for their valuable comments and constructive input. We especially thank the Molecular Imaging Core Facility (MICF), Molecular and Cell Biology Core Facility (MCBCF) and the Multi-Omics Core Facility (MOCF) of the School of Life Science and Technology, ShanghaiTech University, for providing essential technical support. This work received support from grants provided by the Ministry of Science and Technology (MOST) (2018YFA0107702 and 2022YFC2702700) and the National Natural Science Foundation of China (NSFC; 32270896, 31771650 and 82201756). Additional funding was received from the ShanghaiTech startup, and the Shanghai Clinical Research and Trial Center.

Author information

Authors and Affiliations

Authors

Contributions

Z.Z., Z.L. and C.W. conceptualized this project and supervised the overall experiments. Z.D., L.Z., S.L., X.C., J.Z., K.Y., J.X., X.L., H.F., L.W. and J.L. performed experiments. L.Z., Z.D. and S.L conducted data analysis. C.Y., S.H., P.L., R.T., T.J., Y.T., Y.D. and M.Y. conducted clinical data analysis.

Corresponding authors

Correspondence to Chenchen Wang, Zheng Li or Zhi Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Aging thanks Marco Alves, Vassilios Papadopoulos and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Evaluation of testicular degeneration in LOH patients.

a, b, Description of C/C scoreand DAPI staining showed how C/C scores were calculated(a), C/C score of three representative patients were quantified(b). c, Schematic diagram of the workflow in this study. d, Information about the sample donor (see also Supplementary Table 1). e, UMAP plot showed the 9 clusters of testicular cells, which were further grouped in somatic cell and germ cell clusters. f, UMAP plots of germ cells from young, healthy aged and LOH. g, GO categories of genes enriched in each cell type from the testis of young donors compared with LOH donors. h, Babble diagram showing the dissimilarity of SASP gene sets between somatic cell clusters of Young, HA and LOH patients. i, GO categories of DEGs enriched in SCs. j, Babble diagram showing genes of steroid biosynthetic process in SCs. Comparison by two-tailed unpaired t-test. Scale bars: 100 μm (a).

Source data

Extended Data Fig. 2 Primary SCs form young donors and LOH patients.

a, b, Flowchart overview of primary SC isolation, identification, and culture (nSC_Y = 16 ROI, nSC_LOH = 13). c, d, Representative image and quantification showing autophagic flux blockade in the SCLOH samples (nSC_Y, SC_LOH = 15 ROI).e, The flow cytometry pattern of SC with mRFP-eGFP-LC3 transgene. f, The flow cytometry of green fluorescence intensity of mRFP-eGFP-LC3 SC between Y and LOH. Three individual patients for each group (d). The cells were derived from two individual patients for each group (b). Data are presented as mean ± s.e.m. Comparison by two-tailed unpaired t-test. Scale bars: 10 μm (b, c).

Source data

Extended Data Fig. 3 Senescence of PALD SCs after phagocytosis.

a, Diagram of phagocytosis induction in Sertoli cells. b, IPA analysis between the SCLOH before and after phagocytosis induction. c, Volcano plot showing cytokine secretion from IPA analysis. d, β-gal staining of LCs from a (nSC_Y, SC_LOH = 6 ROI). The cells were derived from two individual patients for each group. Data are presented as mean ± s.e.m. Comparison by two-tailed unpaired t-test. Scale bars: 10 μm (d).

Source data

Extended Data Fig. 4 HFD-LOH mice modeling.

a, FACS profile showing unacidified lysosomes accumulated in the SC treated with Baf A for 12 h by LysoSensor probe. b, Body weight of mice with normal or high fat diet for 10 months. c, Ratio of testis weight to Body weight in ND or HFD-LOH mice (nND, HFD-LOH = 12 mice). d, Representative staining and quantification of VASA+ cell indicating atrophy of seminiferous tubules (nND, HFD-LOH = 20 ROI). e, Representative images of PPT1 level in SCs of ND or HFD-LOH mice(nND = 376 cells, nHFD-LOH = 345). f, Diagram and records of Rotarod assay in ND or HFD-LOH mice (nND, HFD-LOH = 8 mice). g, h, Schematic diagram showing the sexual behavior (g) including sniffing and mating (h) in ND or HFD-LOH mice (nND, HFD-LOH = 6 mice). At least five individual mice for each group. The boxes represent the median and interquartile range and the bars represent roughly 95% confidence interval for comparing medians (e). Data are presented as mean ± s.e.m (c, d, f, h). Comparison by two-tailed unpaired t-test. Scale bars: 50 μm (d, e).

Source data

Extended Data Fig. 5 Targeting and enhancing degradative capacity of PALD SCs.

a–c, GO and IPA analysis of major regulator in PALD SCs in young and LOH patients treated with/without MLSA1. d, Time lapse diagram of cholesterol and lysosome in PALD SCs with or without ML-SA1 treatment. e, DEGs of Cholesterol and testosterone synthesis in Leydig cells. Scale bars: 2 μm (f).

Extended Data Fig. 6 Systemic administration of ML-SA1 in HFD-LOH mice.

a, Body weight of HFD-LOH mice with daily ML-SA1 treatment and TRT (nVehicle, ML-SA1 = 6 mice, nTestosterone = 5). b, Representative mouse testis and the ratio of testis weight to body weight in HFD-LOH mice with ML-SA1 treatment and TRT (nVehicle, ML-SA1 = 12, nTestosterone = 10). c, d, Representative staining and quantification of PPT1(c) and NileRed (d) in testis of HFD-LOH mice with ML-SA1 treatment and TRT(c, nND = 200 cells, nVehicle = 326, nML-SA1=236, nTestosterone = 232; d, nND = 211 cells, nVehicle = 215, nML-SA1=216, nTestosterone = 199). e, DEG of SCs in ND and HFD treated with Vehicle or ML-SA1. f, GO analysis of ML-SA1 treatment effect on DEG of SCs between HFD vs ND. g, DEG of LCs in ND and HFD treated with Vehicle or ML-SA1. h, GO analysis of ML-SA1 treatment effect on DEG of LCs between HFD vs ND. At least five individual mice for each group. The boxes represent the median and interquartile range and the bars represent roughly 95% confidence interval for comparing medians (c). Data are presented as mean ± s.e.m (a, b). Comparison by two-tailed unpaired t-test.

Source data

Supplementary information

Supplementary Information

Schematic of improving lysosomal function of PALD SCs. The left panel shows that lysosomal dysfunction in PALD SCs leads to the accumulation of autolysosomes and phagolysosomes, abolishing its function as a metabolic coordinator in TME. The right panel shows that improving lysosomal function through the TRPML1 agonist effectively restores the degradation ability of SCs and the nutrient supply to surrounding cells.

Reporting Summary

Supplementary Table 1

Supplementary Table 1.

Supplementary Table 2

Supplementary Table 2.

Supplementary Table 3

Supplementary Table 3.

Supplementary Table 4

Supplementary Table 4.

Supplementary Table 5

Supplementary Table 5.

Supplementary Table 6

Supplementary Table 6.

Supplementary Table 7

Supplementary Table 7.

Supplementary Table 8

Supplementary Table 8.

Supplementary Table 9

Supplementary Table 9.

Supplementary Movie 1

Supplementary Movie 1.

Supplementary Movie 2

Supplementary Movie 2.

Supplementary Movie 3

Supplementary Movie 3.

Supplementary Movie 4

Supplementary Movie 4.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 4

Unprocessed western blots.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Fig. 7

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Z., Zhao, L., Li, S. et al. Targeting dysregulated phago-/auto-lysosomes in Sertoli cells to ameliorate late-onset hypogonadism. Nat Aging (2024). https://doi.org/10.1038/s43587-024-00614-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43587-024-00614-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing