Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Divergent sulfur(VI) fluoride exchange linkage of sulfonimidoyl fluorides and alkynes

Abstract

Sulfur(VI) fluoride exchange reactions have been applied to the linkage of a diverse range of molecules. However, the connectivity of fluorosulfuryls with alkynes remains a formidable challenge owing to the high reactivity of π systems. Here, we report a divergent sulfur(VI) fluoride exchange reaction between sulfonimidoyl fluorides and alkynes to afford vinylic and acetylenic sulfoximines. Experimental and computational mechanistic studies elucidated key BF3-bridged six-membered transition states that enabled the synchronous activation of silicon-capped alkynes and sulfonimidoyl fluorides via the interactions of F···Si and B···F. Mechanistic studies also revealed that N-benzyl sulfonimidoyls undergo a 1,5-hydrogen migration from the benzylic position to the acetylenic position, which generates the observed vinylic sulfoximines. A range of synthetic transformations, which include azide–alkyne cycloadditions were demonstrated on the vinylic and acetylenic sulfoximine products.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Application of SuFEx reactions and design of the SuFEx linkage between sulfonimidoyl fluorides and alkynes.
Fig. 2: Further synthetic transformations of vinylic sulfoximines.
Fig. 3: Control experiments and NMR spectroscopy studies.
Fig. 4: DFT analysis of the potential reaction pathways to form vinylic sulfoximines from acetylenes and N-benzyl sulfonimidoyl fluoride.
Fig. 5: Proposed reaction pathway for the divergent SuFEx linkage between sulfonimidoyl fluoride and acetylenes pathway.

Similar content being viewed by others

Data availability

The X-ray crystallographic coordinates for the structures reported in this study have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition numbers CCDC 2094839 (4y) and CCDC 2094841 (5f). These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. All other data supporting the findings of this study are available within the paper and Supplementary Information.

References

  1. Dong, J., Krasnova, L., Finn, M. G. & Sharpless, K. B. Sulfur(VI) fluoride exchange (SuFEx): another good reaction for click chemistry. Angew. Chem. Int. Ed. 53, 9430–9448 (2014).

    Article  CAS  Google Scholar 

  2. Fattah, T. A., Saeed, A. & Albericio, F. Recent advances towards sulfur(VI) fluoride exchange (SuFEx) click chemistry. J. Fluorine Chem. 213, 87–112 (2018).

    Article  Google Scholar 

  3. Revathi, L., Ravindar, L., Leng, J., Rakesh, K. P. & Qin, H.-L. Synthesis and chemical transformations of fluorosulfates. Asian J. Org. Chem. 7, 662–682 (2018).

    Article  CAS  Google Scholar 

  4. Ball, N. D. in Emerging Fluorinated Motifs: Synthesis, Properties, and Applications Vol. 2 (eds Ma, J.-A. & Cahard, D.) 621–674 (Wiley-VCH, 2020).

  5. Lee, C. et al. The emerging applications of sulfur(VI) fluorides in catalysis. ACS Catal. 11, 6578–6589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Barrow, A. S. et al. The growing applications of SuFEx click chemistry. Chem. Soc. Rev. 48, 4731–4758 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Guo, T. et al. A new portal to SuFEx click chemistry: a stable fluorosulfuryl imidazolium salt emerging as an ‘F–SO2+’ donor of unprecedented reactivity, selectivity, and scope. Angew. Chem. Int. Ed. 57, 2605–2610 (2018).

    Article  CAS  Google Scholar 

  8. Smedley, C. J. et al. Bifluoride ion mediated SuFEx trifluoromethylation of sulfonyl fluorides and iminosulfur oxydifluorides. Angew. Chem. Int. Ed. 58, 4552–4556 (2019).

    Article  CAS  Google Scholar 

  9. Smedley, C. J. et al. Diversity oriented clicking (DOC): divergent synthesis of SuFExable pharmacophores from 2-substituted-alkynyl-1-sulfonyl fluoride (SASF) hubs. Angew. Chem. Int. Ed. 59, 12460–12469 (2020).

    Article  CAS  Google Scholar 

  10. Zheng, Q. et al. Sulfur [18F]fluoride exchange click chemistry enabled ultrafast late-stage radiosynthesis. J. Am. Chem. Soc. 143, 3753–3763 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kende, A. S. & Mendoza, J. S. A one-pot synthesis of α-ester sulfones. J. Org. Chem. 55, 1125–1126 (1990).

    Article  CAS  Google Scholar 

  12. Chen, W. T. et al. Synthesis of sulfotyrosine-containing peptides by incorporating fluorosulfated tyrosine using an Fmoc-based solid-phase strategy. Angew. Chem. Int. Ed. 55, 1835–1838 (2016).

    Article  CAS  Google Scholar 

  13. Li, S. H., Wu, P., Moses, J. E. & Sharpless, K. B. Multidimensional SuFEx click chemistry: sequential sulfur(VI) fluoride exchange connections of diverse modules launched from an SOF4 hub. Angew. Chem. Int. Ed. 56, 2903–2908 (2017).

    Article  CAS  Google Scholar 

  14. Gao, B., Li, S., Wu, P., Moses, J. E. & Sharpless, K. B. SuFEx chemistry of thionyl tetrafluoride (SOF4) with organolithium nucleophiles: synthesis of sulfonimidoyl fluorides, sulfoximines, sulfonimidamides, and sulfonimidates. Angew. Chem. Int. Ed. 57, 1939–1943 (2018).

    Article  CAS  Google Scholar 

  15. Greed, S. et al. Synthesis of highly enantioenriched sulfonimidoyl fluorides and sulfonimidamides by stereospecific sulfur–fluorine exchange(SuFEx) reaction. Chem. Eur. J. 26, 12533–12538 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Liang, D.-D. et al. Silicon-free SuFEx reactions of sulfonimidoyl fluorides: scope, enantioselectivity, and mechanism. Angew. Chem. Int. Ed. 59, 7494–7500 (2020).

    Article  CAS  Google Scholar 

  17. Liu, C. et al. A general approach to O-sulfation by a sulfur(VI) fluoride exchange reaction. Angew. Chem. Int. Ed. 59, 18435–18441 (2020).

    Article  CAS  Google Scholar 

  18. Wei, M. et al. A broad-spectrum catalytic amidation of sulfonyl fluorides and fluorosulfates. Angew. Chem. Int. Ed. 60, 7397–7404 (2021).

    Article  CAS  Google Scholar 

  19. Narayanan, A. & Jones, L. H. Sulfonyl fluorides as privileged warheads in chemical biology. Chem. Sci. 6, 2650–2659 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jones, L. H. Emerging utility of fluorosulfate chemical probes. ACS Med. Chem. Lett. 9, 584–586 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen, W. et al. Arylfluorosulfates inactivate intracellular lipid binding protein(s) through chemoselective SuFEx reaction with a binding site Tyr residue. J. Am. Chem. Soc. 138, 7353–7364 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Warshel, A. & Bora, R. P. Perspective: defining and quantifying the role of dynamics in enzyme catalysis. J. Chem. Phys. 144, 180901–180904 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Liu, F. et al. Biocompatible SuFEx click chemistry: thionyl tetrafluoride (SOF4)-derived connective hubs for bioconjugation to DNA and proteins. Angew. Chem. Int. Ed. 58, 8029–8033 (2019).

    Article  CAS  Google Scholar 

  24. Fadeyi, O. O. et al. Covalent enzyme inhibition through fluorosulfate modification of a noncatalytic serine residue. ACS Chem. Biol. 12, 2015–2020 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Mortenson, D. E. et al. ‘Inverse drug discovery’ strategy to identify proteins that are targeted by latent electrophiles as exemplified by aryl fluorosulfates. J. Am. Chem. Soc. 140, 200–210 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Liu, Z. et al. SuFEx click chemistry enabled late-stage drug functionalization. J. Am. Chem. Soc. 140, 2919–2925 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhenga, Q. et al. SuFEx-enabled, agnostic discovery of covalent inhibitors of human neutrophil elastase. Proc. Natl Acad. Sci. USA 116, 18808–18814 (2019).

    Article  Google Scholar 

  28. Brighty, G. J. et al. Using sulfuramidimidoyl fluorides that undergo sulfur(VI) fluoride exchange for inverse drug discovery. Nat. Chem. 12, 906–913 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kitamura, S. et al. Sulfur(VI) fluoride exchange (SuFEx)-enabled high-throughput medicinal chemistry. J. Am. Chem. Soc. 142, 10899–10904 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Meng, G. et al. Modular click chemistry libraries for functional screens using a diazotizing reagent. Nature 574, 86–89 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Dong, J., Sharpless, K. B., Kwisnek, L., Oakdale, J. S. & Fokin, V. V. SuFEx-based synthesis of polysulfates. Angew. Chem. Int. Ed. 53, 9466–9470 (2014).

    Article  CAS  Google Scholar 

  32. Yatvin, J., Brooks, K. & Locklin, J. SuFEx on the surface: a flexible platform for postpolymerization modification of polymer brushes. Angew. Chem. Int. Ed. 54, 13370–13373 (2015).

    Article  CAS  Google Scholar 

  33. Oakdale, J. S., Kwisnek, L. & Fokin, V. V. Selective and orthogonal post-polymerization modification using sulfur(VI) fluoride exchange (SuFEx) and copper-catalyzed azide–alkyne cycloaddition (CuAAC) reactions. Macromolecules 49, 4473–4479 (2016).

    Article  CAS  Google Scholar 

  34. Gao, B. et al. Bifluoride-catalysed sulfur(VI) fluoride exchange reaction for the synthesis of polysulfates and polysulfonates. Nat. Chem. 9, 1083–1088 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, H. et al. SuFEx-based polysulfonate formation from ethenesulfonyl fluoride–amine adducts. Angew. Chem. Int. Ed. 56, 11203–11208 (2017).

    Article  CAS  Google Scholar 

  36. Yang, C., Flynn, J. P. & Niu, J. Facile synthesis of sequence-regulated synthetic polymers using orthogonal SuFEx and CuAAC click reactions. Angew. Chem. Int. Ed. 57, 16194–16199 (2018).

    Article  CAS  Google Scholar 

  37. Kolomeitsev, A. A., Movchun, V. N., Kondratenko, N. V. & Yagupolski, Y. L. A convenient route to aryl trifluoromethyl sulfones by fluoride-catalyzed cross-coupling of arenesulfonyl fluorides with (trifluoromethyl)trimethylsilane and (trifluoromethyl)trimethylstannane. Synthesis 12, 1151–1152 (1990).

    Article  Google Scholar 

  38. Tang, S. et al. Metallomicelle catalyzed aerobic tandem desilylation/Glaser reaction in water. Green Chem. 21, 2899–2904 (2019).

    Article  CAS  Google Scholar 

  39. Nishimura, T., Takiguchi, Y. & Hayashi, T. Effect of chiral diene ligands in rhodium-catalyzed asymmetric addition of arylboronic acids to α,β-unsaturated sulfonyl compounds. J. Am. Chem. Soc. 134, 9086–9089 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Mukherjee, P. et al. Sulfonamide synthesis via calcium triflimide activation of sulfonyl fluorides. Org. Lett. 20, 3943–3947 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Mahapatra, S. et al. SuFEx activation with Ca(NTf2)2: a unified strategy to access sulfamides, sulfamates, and sulfonamides from S(VI) fluorides. Org. Lett. 22, 4389–4394 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wada, M., Sakurai, Y. & Akiba, K. Addition of alkynyl anions to aldimines containing α-hydrogens: a novel synthesis of β-aminoacetylenes. Tetrahedron Lett. 25, 1083–1084 (1984).

    Article  CAS  Google Scholar 

  43. Wilkins, L. C. et al. Contrasting frustrated Lewis pair reactivity with selenium- and boron-based Lewis acids. Angew. Chem. Int. Ed. 55, 11292–11295 (2016).

    Article  CAS  Google Scholar 

  44. Soltani, Y., Wilkins, L. C. & Melen, R. L. Stoichiometric and catalytic C–C and C–H bond formation with B(C6F5)3 via cationic intermediates. Angew. Chem. Int. Ed. 56, 11995–111999 (2017).

    Article  CAS  Google Scholar 

  45. Lu, T. & Chen, Q. Shermo: a general code for calculating molecular thermochemistry properties. Comput. Theor. Chem. 1200, 113249 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for financial support provided by NSFC (22125103, 22071057 and 21871089), STCSM (20XD1421500 and 20JC1416800), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Contributions

X.J. and M.W. conceived the idea and supervised the project. M.W. and D.Z. designed and carried out the experiments. Y.M. conducted the DFT calculations. X.J., M.W. and W.-P.D. discussed the results, contributed to the writing of the manuscript and commented on the manuscript. All the authors approved the final version of the manuscript for submission.

Corresponding authors

Correspondence to Ming Wang or Xuefeng Jiang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Han Zuilhof and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6 and Tables 1–7.

Supplementary Data 1

Crystallographic data of 4y CCDC 2094839.

Supplementary Data 2

Crystallographic data of 5f CCDC 2094841.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, D., Ma, Y., Deng, WP. et al. Divergent sulfur(VI) fluoride exchange linkage of sulfonimidoyl fluorides and alkynes. Nat. Synth 1, 455–463 (2022). https://doi.org/10.1038/s44160-022-00060-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00060-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing