Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Generation and reactivity of unsymmetrical strained heterocyclic allenes

Abstract

Strained cyclic allenes are short-lived intermediates that confine a functional group with a preferred linear geometry, an allene, into a small ring, inducing strain-driven reactivity. Nitrogen-containing variants, or azacyclic allenes, have proved valuable for the assembly of complex nitrogen-containing compounds. Whereas 3,4-azacyclic allenes, which bear a symmetrical core, have been the focus of multiple studies, their unsymmetrical 2,3-azacyclic counterparts have remained underexplored. In the present study, we report density functional theory studies investigating the structure of such unsymmetrical azacyclic allenes and experimental efforts to access and engage them in strain-promoted cycloadditions under mild conditions. Control experiments support either concerted or stepwise diradical mechanisms for these reactions, depending on the type of cycloaddition examined. Moreover, we generate the corresponding 2,3-oxacyclic allene and demonstrate its reactivity in cycloadditions and a metal-catalysed process. Given the scaffolds accessed, coupled with the observed selectivity trends, these results are expected to encourage the application of unsymmetrical heterocyclic allenes for the synthesis of heterocycles that bear a high fraction of sp3-hybridized atoms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Application and overview of in situ-generated, strained azacyclic intermediates.
Fig. 2: Resonance structure of cyclic allene (7) and structural analysis of 3,4-azacyclic allene (8) and 2,3-azacyclic allene (9).
Fig. 3: Synthesis of silyl triflate allene precursor 12.
Fig. 4: Empirically observed selectivity trends.
Fig. 5: Selectivity considerations in cycloaddition reactions of 9.
Fig. 6: Reactions of oxacyclic allene 62.

Similar content being viewed by others

Data availability

The data supporting the findings of the present study are available within the article and its Supplementary Information. Crystallographic data for 51 have been deposited at the Cambridge Crystallographic Data Centre under deposition no. CCDC 2247612. Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures.

References

  1. Vitaku, E., Smith, D. T. & Njardarson, J. T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem. 57, 10257–10274 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Varshney, S. & Mishra, N. in Recent Developments in the Synthesis and Applications of Pyridines (ed. Singh, P.) 43–69 (Elsevier, 2022) .

  3. Lamberth, C. Heterocyclic chemistry in crop protection. Pest Manag. Sci. 69, 1106–1114 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Joule, J. A. in Advances in Heterocyclic Chemistry (eds. Scriven, E. F. V. & Ramsden, C. A.) Vol. 119, 81–106 (Elsevier, 2016).

  5. Anthony, S. M., Wonilowicz, L. G., McVeigh, M. S. & Garg, N. K. Leveraging fleeting strained intermediates to access complex scaffolds. JACS Au. 7, 897–912 (2021).

    Article  Google Scholar 

  6. Shi, J., Li, L. & Li, Y. o-Silylaryl triflates: a journey of Kobayashi aryne precursors. Chem. Rev. 121, 3892–4044 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Darzi, E. R., Barber, J. S. & Garg, N. K. Cyclic alkyne approach to heteroatom-containing polycyclic aromatic hydrocarbon scaffolds. Angew. Chem., Int. Ed. 58, 9419–9424 (2019).

    Article  CAS  Google Scholar 

  8. Westphal, M. V. et al. Water-compatible cycloadditions of oligonucleotide-conjugated strained allenes for DNA-encoded library synthesis. J. Am. Chem. Soc. 142, 7776–7782 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ippoliti, F. M. et al. Total synthesis of lissodendoric acid A via stereospecific trapping of a strained cyclic allene. Science 379, 261–265 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. McMahon, T. C. et al. Generation and regioselective trapping of a 3,4-piperidyne for the synthesis of functionalized heterocycles. J. Am. Chem. Soc. 137, 4082–4085 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wentrup, C., Blanch, R., Briehl, H. & Gross, G. Benzyne, cyclohexyne, and 3-azacyclohexyne and the problem of cycloalkyne versus cycloalkylideneketene genesis. J. Am. Chem. Soc. 110, 1874–1880 (1988).

    Article  CAS  Google Scholar 

  12. Tlais, S. F. & Danheiser, R. L. N-Tosyl-3-azacyclohexyne. Synthesis and chemistry of a strained cyclic ynamide. J. Am. Chem. Soc. 136, 15489–15492 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Christl, M., Braun, M., Wolz, E. & Wagner, W. Cycloallene, 9. 1-Phenyl-1-aza-3,4-cyclohexadien, das Erste Isodihydropyridin: Ertzeugung und Abfangreaktionen. Chem. Ber. 127, 1137–1142 (1994).

    Article  CAS  Google Scholar 

  14. Barber, J. S. et al. Diels–Alder cycloadditions of strained azacyclic allenes. Nat. Chem. 10, 953–960 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ramirez, M., Svatunek, D., Liu, F., Garg, N. K. & Houk, K. N. Origins of endo selectivity in Diels–Alder reactions of cyclic allene dienophiles. Angew. Chem. Int. Ed. 60, 14989–14997 (2021).

    Article  CAS  Google Scholar 

  16. Drinkuth, S., Groetsch, S., Peters, E.-M., Peters, K. & Christl, M. 1-Methyl-1-azacyclohexa-2,3-diene(NB)borane—generation and interception of an unsymmetrical isodihydropyridine. Eur. J. Org. Chem. 2001, 2665–2670 (2001).

    Article  Google Scholar 

  17. Christl, M. in Modern Allene Chemistry (eds Krause, N. & Kashmi, S. A. K.) 243–357 (Wiley-VCH, 2004).

  18. Wittig, G. & Fritze, P. On the intermediate occurrence of 1,2-cyclohexadiene. Angew. Chem. Int. Ed. 5, 846 (1966).

    Article  Google Scholar 

  19. Moser, W. R. The reactions of gem-dihalocyclopropanes with organometallic reagents. PhD dissertation, Massachusetts Institute of Technology (1964).

  20. Shakespeare, W. C. & Johnson, R. P. 1,2,3-cyclohexatriene and cyclohexen-3-yne: two new highly strained C6H6 isomers. J. Am. Chem. Soc. 112, 8578–8579 (1990).

    Article  CAS  Google Scholar 

  21. Moore, W. R. & Moser, W. R. The reaction of 6,6-dibromobicyclo[3.1.0]hexane with methyllithium. Efficient trapping of 1,2-cyclohexadiene by styrene. J. Org. Chem. 35, 908–912 (1970).

    Article  CAS  Google Scholar 

  22. Schöneboom, C., Groetsch, S., Christl, M. & Engels, B. Computational assessment of the electronic structure of 1-azacyclohexa-2,3,5-triene (3δ2-1H-pyridine) and its benzo derivative (3δ2-1H-quinoline) as well as generation and interception of 1-methyl-3δ2-1H-quinoline. Chem. Eur. J. 9, 4641–4649 (2003).

    Article  PubMed  Google Scholar 

  23. Ohwada, T., Okamoto, I., Shudo, K. & Yamaguchi, K. Intrinsic pyramidal nitrogen of N-sulfonylamides. Tetrahedron Lett. 39, 7877–7880 (1998).

    Article  CAS  Google Scholar 

  24. Moriarty, R. M. The nuclear magnetic resonance spectrum of N-methyl sulfinamides—a model for the sulfinyl carbanion. Tetrahedron Lett. 10, 509–512 (1964).

    Article  Google Scholar 

  25. Wheeler, S. E., Houk, K. N., Schleyer, P. V. R. & Allen, W. D. A hierarchy of homodesmotic reactions for thermochemistry. J. Am. Chem. Soc. 131, 2547–2560 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yamano, M. M. et al. Cycloadditions of oxacyclic allenes and a catalytic asymmetric entryway to enantioenriched cyclic allenes. Angew. Chem. Int. Ed. 58, 5653–5657 (2019).

    Article  CAS  Google Scholar 

  27. Kelleghan, A. V., Witkowski, D. C., McVeigh, M. S. & Garg, N. K. Palladium-catalyzed annulations of strained cyclic allenes. J. Am. Chem. Soc. 143, 9338–9342 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sukeda, M., Ichikawa, S., Matsuda, A. & Shuto, S. The first radical method for the introduction of an ethynyl group using a silicon tether and its application to the synthesis of 2′-deoxy-2′-C-ethynylnucleosides. J. Org. Chem. 68, 3465–3475 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Shishido, R. et al. General synthesis of trialkyl- and dialkylarylsilylboranes: versatile silicon nucleophiles in organic synthesis. J. Am. Chem. Soc. 142, 14125–14133 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Chini, M., Crotti, P., Gardelli, C. & Macchia, F. Regiochemical control of the ring opening of 1,2-epoxides by means of chelating processes. 6. Opening reactions of 3,4-epoxytetrahydropyran. Tetrahedron 50, 1261–1274 (1994).

    Article  CAS  Google Scholar 

  31. Houk, K. N. Frontier molecular orbital theory of cycloaddition reactions. Acc. Chem. Res. 8, 361–369 (1975).

    Article  CAS  Google Scholar 

  32. Ruzziconi, R., Naruse, Y. & Schlosser, M. 1-Oxa-2,3-cyclohexadiene (‘2H-isopyran’): a strained heterocyclic allene undergoing cycloaddition reactions with characteristic typo-, regio-, and stereoselectivities. Tetrahedron 47, 4603–4610 (1991).

    Article  CAS  Google Scholar 

  33. Elliott, R. L. et al. Cycloadditions of cephalosporins. A comprehensive study of the reaction of cephalosporin triflates with olefins, acetylenes, and dienes to form [2+2] and [4+ 2] adducts. J. Org. Chem. 62, 4998–5016 (1997).

    Article  CAS  Google Scholar 

  34. Bottini, A. T., Hilton, L. L. & Plott, J. Relative reactivities of 1,2-cyclohexadiene with conjugated dienes and styrene. Tetrahedron 31, 1997–2001 (1975).

    Article  CAS  Google Scholar 

  35. Boafo, E. A., Darko, K., Afriyie, B. A., Tia, R. & Adei, E. Trapping of 1,2-cyclohexadiene: a DFT mechanistic study on the reaction of 1,2-cyclohexadiene with olefins and nitrones. J. Mol. Graphics Model. 81, 1–13 (2018).

    Article  CAS  Google Scholar 

  36. Christl, M. & Braun, M. Friesetzung und Abfangreaktionen von 1-Oxa-2,3-cyclohexadien. Chem. Ber. 122, 1939–1946 (1989).

    Article  CAS  Google Scholar 

  37. Fischer, H. & Radom, L. Factors controlling the addition of carbon-centered radicals to alkenes—an experimental and theoretical perspective. Angew. Chem. Int. Ed. 40, 1340–1371 (2001).

    Article  CAS  Google Scholar 

  38. Feldman, K. S. & Mareska, D. A. Alkynyliodonium salts in organic synthesis. Preparation of annelated dihydropyrroles by cascade addition/bicyclization of dienyltosylamide anions with phenyl(propynyl)iodonium triflate. J. Org. Chem. 64, 5650–5660 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Barber, J. S. et al. Nitrone cycloadditions of 1,2-cyclohexadiene. J. Am. Chem. Soc. 138, 2512–2515 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jamart-Grègoire, B., Grand, V., Ianelli, S., Nardelli, M. & Caubère, P. Aggregative activation in heterocyclic elimination–additions I. Dehydrodihydropyran nucleophilic condensations. Tetrahedron Lett. 31, 7603–7606 (1990).

    Article  Google Scholar 

  41. Jamart-Grègoire, B., Mercier-Girardot, S., Ianelli, S., Nardelli, M. & Caubère, P. Aggregative activation and heterocyclic chemistry II nucleophilic condensations of ketone enolates on dehydrodihydropyran generated by complex bases. Tetrahedron 51, 1973–1984 (1995).

    Article  Google Scholar 

  42. Spence, K. A., Tena Meza, A. & Garg, N. K. Merging metals and strained intermediates. Chem. Catalysis 2, 1870–1879 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Witkowski, D. C., McVeigh, M. S., Scherer, G. M., Anthony, S. M. & Garg, N. K. Catalyst-controlled annulations of strained cyclic allenes with π-allylpalladium complexes. J. Am. Chem. Soc. 19, 10491–10496 (2023).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the National Institutes of Health (NIH)–National Institute of General Medical Sciences (grant no. R35 GM139593 to N.K.G. and supplement to A.T.M.), the National Science Foundation (NSF; grant no. DGE-2034835 to A.V.K.), the Foote family (A.V.K. and A.T.M.) and the Trueblood family (N.K.G.). These studies were supported by shared instrumentation grants from the NSF (grant no. CHE-1048804), the NIH National Center for Research Resources (grant no. S10RR025631) and the NIH Office of Research Infrastructure Programs (grant no. S10OD028644). Calculations were performed on the Hoffman2 cluster and the University of California, Los Angeles (UCLA) Institute of Digital Research and Education and the Extreme Science and Engineering Discovery Environment, which is supported by the NSF (OCI-1053575). We thank K. N. Houk (UCLA) for computational resources and helpful discussions and S. Khan (UCLA) for X-ray analysis.

Author information

Authors and Affiliations

Authors

Contributions

A.V.K. and A.T.M. designed and performed experiments and analysed experimental data. A.V.K. designed, performed and analysed computational studies. N.K.G. directed the investigations and prepared the manuscript with contributions from all authors. All authors contributed to discussions.

Corresponding author

Correspondence to Neil K. Garg.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Peter Seavill, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental details Parts I (A–F) and II (A–F), Supplementary Figs. 1–7 and Tables 1–3.

Supplementary Data 1

Crystallographic data for compound 51 (CCDC 2247612).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kelleghan, A.V., Tena Meza, A. & Garg, N.K. Generation and reactivity of unsymmetrical strained heterocyclic allenes. Nat. Synth 3, 329–336 (2024). https://doi.org/10.1038/s44160-023-00432-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00432-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing