Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Assembly of air-stable copper(I) alkynide nanoclusters assisted by tripodal polydentate phosphoramide ligands

Abstract

Copper(I) nanoclusters are attractive due to their potential applications, but their synthesis remains challenging due to susceptibility to oxidation and the lack of mature synthetic methods. Here, by introducing a bifunctional phosphoramide ligand, N,N′,N′-tris(2-pyridinyl)phosphoric triamide [PO(NHPy)3], into the Cu/RC≡CH assembly system, we construct two high-nuclearity Cu(I) nanoclusters (Cu62 and Cu12). Single-crystal X-ray structural analysis reveals that multidentate phosphoramide ligands enhance the stability of Cu(I) nanoclusters through cooperation of hydrogen and coordination bonding. Cu62 is a four-layered (C2)@Cu8@(C2)12@Cu54 core, where acetylenediide (C22−) ions from alkynol ligands are inserted betwen two Cu shells (inner Cu8 and outer Cu54 shells). By changing alkynol to another cycloalkyl alkyne lacking the OH group, Cu12 without C22− ion was isolated, demonstrating the promotion of C22− release by hydroxyl group in the above assembly system. We show the universality of the synthetic method by isolating two additional nanoclusters (Cu32 and Cu24). Cu62 exhibits good degradation performance for various dyes due to the generation of reactive oxygen species (·OH). This work presents a generalized strategy for constructing high-nuclearity Cu(I) alkynyl nanoclusters at room temperature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthetic routes for Cu62, Cu32, Cu24 and Cu12.
Fig. 2: Structural anatomy of Cu62.
Fig. 3: The detailed analysis of C22− ions in Cu62.
Fig. 4: The detailed analysis of ligands in Cu62.
Fig. 5: The detailed structure analysis for Cu12 nanocluster.
Fig. 6: Optical behaviour and the underlying mechanisms.
Fig. 7: Photocatalysis behaviour and the underlying mechanisms.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are included within the article and its Supplementary Information. Source data are provided with this paper. Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2237942 (Cu62), 2237943 (Cu12), 2290356 (Cu32) and 2290357 (Cu24). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Yonesato, K. et al. Controlled assembly synthesis of atomically precise ultrastable silver nanoclusters with polyoxometalates. J. Am. Chem. Soc. 141, 19550–19554 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Silalahi, R. P. B. et al. Reactivities of interstitial hydrides in a Cu11 template: en route to bimetallic clusters. Angew. Chem. Int. Ed. 61, e202113266 (2022).

    Article  CAS  Google Scholar 

  3. Anish, K. D. et al. [Cu18H3(S-Adm)12(PPh3)4Cl2]: fusion of platonic and Johnson solids through a Cu(0) center and its photophysical properties. Chem. Sci. 13, 7616–7625 (2022).

  4. Li, G. J. et al. Heterometallic precisely constructed silver active sites in gold nanoclusters for chemical fixation of CO2. Angew. Chem. Int. Ed. 60, 10573–10576 (2021).

    Article  CAS  Google Scholar 

  5. Joshi, C. P., Bootharaju, M. S., Alhilaly, M. J. & Bakr, O. M. [Ag25(SR)18]: the "golden" silver nanoparticle. J. Am. Chem. Soc. 137, 11578–11581 (2015).

  6. Wang, J., Wang, Z. Y., Li, S. J., Zang, S. Q. & Mak, T. C. W. Carboranealkynyl-protected gold nanoclusters: size conversion and UV-vis-NIR optical properties. Angew. Chem. Int. Ed. 60, 5959–5964 (2021).

    Article  CAS  Google Scholar 

  7. Zheng, K. Y. & Xie, J. P. Engineering ultrasmall metal nanoclusters as promising theranostic agents. Trends Chem. 2, 665–679 (2020).

    Article  CAS  Google Scholar 

  8. Li, Q. Z. et al. Unraveling the nucleation process from a Au(I)-SR complex to transition-size nanoclusters. J. Am. Chem. Soc. 143, 15224–15232 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Wang, F., Chen, P. H. & Liu, G. S. Copper-catalysed asymmetric radical cyanation. Nat. Synth. 1, 107–116 (2022).

    Article  Google Scholar 

  10. Stoddart, A. & Cleave, V. The evolution of biomaterials. Nat. Mater. 8, 444–445 (2009).

    Article  CAS  Google Scholar 

  11. Kleeberg, C., Cheung, M. S., Lin, Z. Y. & Marder, T. B. Copper-mediated reduction of CO2 with pinB-SiMe2Ph via CO2 insertion into a copper-silicon bond. J. Am. Chem. Soc. 133, 19060–19063 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Yamazoe, S. et al. Hierarchy of bond stiffnesses within icosahedral-based gold clusters protected by thiolates. Nat. Commun. 7, 10414 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Qu, M. et al. Observation of non-FCC copper in alkynyl-protected Cu53 nanoclusters. Angew. Chem. Int. Ed. 132, 6569–6574 (2020).

    Article  Google Scholar 

  14. Wong, C. L., Cheng, Y. H., Poon, C. T. & Yam, V. W. W. Synthesis, photophysical, photochromic, and photomodulated resistive memory studies of dithienylethene-containing copper(I) diimine complexes. Inorg. Chem. 59, 14785–14795 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Takeda, H., Monma, Y. & Ishitani, O. Highly functional dinuclear CuI-complex photosensitizers for photocatalytic CO2 reduction. ACS Catal. 11, 11973–11984 (2021).

    Article  CAS  Google Scholar 

  16. Zhang, L. L. et al. Core-dependent properties of copper nanoclusters: valence-pure nanoclusters as NIR TADF emitters and mixed-valence ones as semiconductors. Chem. Sci. 10, 10122−–110128 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ji, W. et al. Cuprous cluster as effective single-molecule metallaphotocatalyst in white light-driven C–H arylation. J. Catal. 378, 270–276 (2019).

    Article  CAS  Google Scholar 

  18. Geng, W., Wei, J., Zhang, W. X. & Xi, Z. Isolable and well-defined butadienyl organocopper(I) aggregates: facile synthesis, structural characterization, and reaction chemistry. J. Am. Chem. Soc. 136, 610–613 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Moret, M. E., Zhang, L. & Peters, J. C. A polar copper-boron one-electron sigma-bond. J. Am. Chem. Soc. 135, 3792–3795 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Xie, Y. P. et al. Assembly of Cu(I) alkynyl complexes: from cluster to infinite cluster-based framework. Cryst. Growth Des. 19, 5791–5797 (2019).

    Article  CAS  Google Scholar 

  21. Stamatatos, T. C. & Rentschler, E. Organic chelate-free and azido-rich metal clusters and coordination polymers from the use of Me3SiN3: a new synthetic route to complexes with beautiful structures and diverse magnetic properties. Chem. Commun. 55, 11–26 (2019).

    Article  CAS  Google Scholar 

  22. Zhan, C. H. et al. Assembly of tungsten-oxide-based pentagonal motifs in solution leads to nanoscale {W48}, {W56}, and {W92} polyoxometalate clusters. Angew. Chem. Int. Ed. 54, 14308–14312 (2015).

  23. Levitsky, M. M., Bilyachenko, A. N. & Shubina, E. S. Cagelike metallagermanates and metallagermoxanes: synthesis, structures and functional properties. Coord. Chem. Rev. 386, 209–239 (2019).

    Article  CAS  Google Scholar 

  24. Dong, X. Y. et al. Ligand engineering to achieve enhanced ratiometric oxygen sensing in a silver cluster-based metal–organic framework. Nat. Commun. 11, 3678 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wu, Z. & Jin, R. On the ligand’s role in the fluorescence of gold nanoclusters. Nano Lett. 10, 2568–2573 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Schmid, G. The relevance of shape and size of Au55 clusters. Chem. Soc. Rev. 37, 1909–1930 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, M. M. et al. AIE triggers the circularly polarized luminescence of atomically precise enantiomeric copper(I) alkynyl clusters. Angew. Chem. Int. Ed. 59, 10052–10058 (2020).

    Article  CAS  Google Scholar 

  28. Gupta, A. K. & Orthaber, A. Alkynyl coinage metal clusters and complexes—syntheses, structures, and strategies. Chem. Eur. J. 24, 7536–7559 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Maity, P., Tsunoyama, H., Yamauchi, M., Xie, S. & Tsukuda, T. Organogold clusters protected by phenylacetylene. J. Am. Chem. Soc. 133, 20123–20125 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, S. S. et al. [Ag48(C≡CtBu)20(CrO4)7]: an atomically precise silver nanocluster co-protected by inorganic and organic ligands. J. Am. Chem. Soc. 141, 4460–4467 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, L. M. & Mak, T. C. W. Comproportionation synthesis of copper(I) alkynyl complexes encapsulating polyoxomolybdate templates: bowl-shaped Cu33 and peanut-shaped Cu62 nanoclusters. J. Am. Chem. Soc. 138, 2909–2912 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, L. L. M. & Mak, T. C. W. Temperature-mediated template release: facile growth of copper(I) mixed ethynediide/isopropylethynide nanoclusters. Angew. Chem. Int. Ed. 56, 16228–16232 (2017).

    Article  CAS  Google Scholar 

  33. Wang, Q. M. & Mak, T. C. W. Argentophilicity and solvent-induced structural diversity in double salts of silver acetylide with silver perfluoroalkyl carboxylates. J. Am. Chem. Soc. 123, 7594–7600 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Yuan, S. Y., Guan, Z. J., Liu, W. D. & Wang, Q. M. Solvent-triggered reversible interconversion of all-nitrogen-donor-protected silver nanoclusters and their responsive optical properties. Nat. Commun. 10, 4032 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yuan, S. F., Liu, W. D., Liu, C. Y., Guan, Z. J. & Wang, Q. M. Nitrogen donor protection for atomically precise metal nanoclusters. Chem. Eur. J. 28, e202104445 (2022).

    Article  CAS  PubMed  Google Scholar 

  36. Mohamed, A. A. Advances in the coordination chemistry of nitrogen ligand complexes of coinage metals. Coord. Chem. Rev. 254, 1918–1947 (2010).

    Article  CAS  Google Scholar 

  37. Karak, S., Kumar, S., Pachfule, P. & Banerjee, R. Porosity prediction through hydrogen bonding in covalent organic frameworks. J. Am. Chem. Soc. 140, 5138–5145 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Gupta, A. K., Chipem, F. A. & Boomishankar, R. A 2-pyridyl (py) attached phosphine imine [P(Npy)(NHpy)3] and an imido phosphinate ion [P(Npy)2(NHpy)2] in its Ag(I) complex. Dalton Trans. 41, 1848–1853 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Gupta, A. K., Steiner, A. & BoomisHankar, R. Tri-, hepta- and octa-nuclear Ag(I) complexes derived from 2-pyridyl-functionalized tris(amido)phosphate ligand. Dalton Trans. 41, 9753–9759 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Schneider, J. D. et al. Synthesis and characterization of Cu(II) and mixed-valence Cu(I)-Cu(II) clusters supported by pyridylamide ligands. Inorg. Chem. 59, 5433–5446 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Yu, M. X. et al. Constructing multi-cluster copper(I) halides using conformationally flexible ligands. Chem. Commun. 56, 7233–7236 (2020).

    Article  CAS  Google Scholar 

  42. Yu, M. X. et al. Cation-induced strategy toward an hourglass-shaped Cu6I7 cluster and its color-tunable luminescence. Chem. Mater. 29, 8093–8099 (2017).

    Article  CAS  Google Scholar 

  43. Zhang, J. et al. Magnetic anisotropy from trigonal prismatic to trigonal antiprismatic Co(II) complexes: experimental observation and theoretical prediction. Inorg. Chem. 57, 3903–3912 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Zhuo, H. Y. et al. A tetradecanuclear organometallic copper(I)-alkynide cluster: synthesis, crystal structure, and luminescent property. J. Clust. Sci. 29, 1017–1022 (2018).

    Article  CAS  Google Scholar 

  45. Chang, X. Y., Low, K. H., Wang, J. Y., Huang, J. S. & Che, C. M. From cluster to polymer: ligand cone angle controlled syntheses and structures of copper(I) alkynyl complexes. Angew. Chem. Int. Ed. 55, 10312–10316 (2016).

    Article  CAS  Google Scholar 

  46. Wei, Q. H. et al. Luminescent AgI–CuI heterometallic hexa-, octa-, and hexadecanuclear alkynyl complexes. Inorg. Chem. 43, 3484–3491 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Vogler, A. & Kunkely, H. Photoluminescence of tetrameric copper(I) iodide complexes in solution. J. Am. Chem. Soc. 108, 7211–7212 (1986).

    Article  CAS  Google Scholar 

  48. Ford, P. C., Cariati, E. & Bourassa, J. Photoluminescence properties of multinuclear copper(I) compounds. Chem. Rev. 99, 3625–3647 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Jiang, X. F., Hau, F. K., Sun, Q. F., Yu, S. Y. & Yam, V. W. W. From {Au(I)···Au(I)}-coupled cages to the cage-built 2D {Au(I) ···Au(I)} arrays: Au(I) ···Au(I) bonding interaction driven self-assembly and their Ag(I) sensing and photo-switchable behavior. J. Am. Chem. Soc. 136, 10921–10929 (2014).

  50. Allendorf, M. D., Bauer, C. A., Bhakta, R. K. & Houk, R. J. Luminescent metal–organic frameworks. Chem. Soc. Rev. 38, 1330–1352 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Yam, V. W. W. et al. Synthesis and luminescence behaviour of mixed-metal rhenium(I)–copper(I) and silver(I) alkynyl complexes. Coordin. Chem. Rev. 245, 39–47 (2003).

    Article  CAS  Google Scholar 

  52. Zeng, X. Y., Liu, R., Liu, D. D., Liu, Q. Y. & Wang, Y. L. Cadmium-1,3,6,8-tetrakis(4-carboxylphenyl)pyrene framework as a thermometer for fluorescence sensing of temperature. Z. Anorg. Allg. Chem. 645, 1379–1383 (2019).

    Article  CAS  Google Scholar 

  53. Okabe, K. et al. Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. Nat. Commun. 3, 705 (2012).

    Article  PubMed  Google Scholar 

  54. Wang, Z. Y. et al. Atomically precise site-specific tailoring and directional assembly of superatomic silver nanoclusters. J. Am. Chem. Soc. 140, 1069–1076 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Zhang, Z., Zhu, Y. F., Chen, X., Zhang, H. & Wang, J. A full-spectrum metal-free porphyrin supramolecular photocatalyst for dual functions of highly efficient hydrogen and oxygen evolution. Adv. Mater. 31, 1806626 (2019).

    Article  Google Scholar 

  56. Xiong, J. et al. CN/rGO@BPQDs high–low junctions with stretching spatial charge separation ability for photocatalytic degradation and H2O2 production. Appl. Catal. B 266, 118602–118614 (2020).

    Article  CAS  Google Scholar 

  57. Yang, B., Chen, Y. & Shi, J. Reactive oxygen species (ROS)-based nanomedicine. Chem. Rev. 119, 4881–4985 (2019).

    Article  CAS  PubMed  Google Scholar 

  58. Si, Y. et al. Daylight-driven rechargeable antibacterial and antiviral nanofibrous membranes for bioprotective applications. Sci. Adv. 4, 5931 (2018).

    Article  Google Scholar 

  59. Wang, X. S. et al. Integration of adsorption and photosensitivity capabilities into a cationic multivariate metal–organic framework for enhanced visible-light photoreduction reaction. Appl. Catal. B 253, 323–330 (2019).

    Article  CAS  Google Scholar 

  60. Li, J. J. et al. Use in photoredox catalysis of stable donor–acceptor covalent-organic frameworks and membrane strategy. Adv. Funct. Mater. 33, 2305735 (2023).

    Article  CAS  Google Scholar 

  61. Deneme, I., Liman, G., Can, A., Demirel, G. & Usta, H. Enabling three-dimensional porous architectures via carbonyl functionalization and molecularspecific organic-SERS platforms. Nat. Commun. 12, 6119 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nosaka, Y. & Nosaka, A. Y. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 117, 11302–11336 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Kim, M. et al. Enhanced photocatalytic performance of nanosized mixed-ligand metal–organic frameworks through sequential energy and electron transfer process. Inorg. Chem. 59, 12947–12953 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (grant nos. 22325105, 22171164 and 52261135637 to D.S.; 22201159 to Z.W.), the Natural Science Foundation of Shandong Province (nos. ZR2019ZD45, ZR2020ZD35, JQ201803 and ZR2017MB061), the Taishan Scholar Project of Shandong Province of China (nos. tsqn201812003 and ts20190908), the National Postdoctoral Innovative Talents Support Program (no. BX2021171) and China Postdoctoral Science Foundation (no. 2021M700081).

Author information

Authors and Affiliations

Authors

Contributions

The original idea was conceived by D.S.; experiments and data analyses were performed by H.Z. and D.S.; DFT calculations and relevant data analyses were performed by C.Z., B.H. and H.Z.; structure characterization was performed by H.Z., Z.W. and D.S.; and the paper was drafted by D.S., H.Z., C.Z., B.H., Z.W., Y.L., Q.X. and C.-H.T. All authors have given approval to the paper.

Corresponding author

Correspondence to Di Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Alexandra Groves, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–41 and Tables 1–9.

Supplementary Data 1

Crystallographic data of Cu62, CCDC 2237942.

Supplementary Data 2

Crystallographic data of Cu32, CCDC 2290356.

Supplementary Data 3

Crystallographic data of Cu12, CCDC 2237943.

Supplementary Data 4

Crystallographic data of Cu24, CCDC 2290357.

Source data

Source Data Fig. 6

Data of solid-state UV–vis, varied-temperature luminescence, and PDOS.

Source Data Fig. 7

Data of photocurrent responses, EIS, photocatalysis and ESR.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Zhang, C., Han, B. et al. Assembly of air-stable copper(I) alkynide nanoclusters assisted by tripodal polydentate phosphoramide ligands. Nat. Synth 3, 517–526 (2024). https://doi.org/10.1038/s44160-023-00467-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00467-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing