Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mirror-image cyclodextrins

Abstract

For over a century, naturally occurring cyclodextrins (CDs) have been investigated intensively and extensively. CDs possess inherently stable chiralities, which render them versatile players in diverse arenas of technology. Although naturally occurring CDs can be mass-produced by the enzymatic modification of amylose, their mirror-images have, however, remained inaccessible. Here we report the syntheses of three mirror-image CDs—namely, α-, β- and γ-l-CDs, which are composed of six, seven and eight α-1,4-linked l-glucopyranosyl residues, respectively. Hallmarks of their syntheses include the highly diastereoselective installations of multiple contiguous 1,2-cis l-glucopyranosidic linkages, the rapid assembly of linear oligosaccharides employing one-pot glycosylation strategies and three efficient diastereoselective cyclizations. The structures and inherent chiralities of all three synthetic l-CDs have been established unambiguously by single-crystal X-ray diffraction and induced electronic circular dichroism spectroscopy. The availability of l-CDs has enabled the elucidation of an unprecedented chiral self-sorting of a racemic modification of β-CDs in the solid state and an investigation of the chiral recognition of enantiomeric fenchone by α-l-CD. This research identifies a missing piece of the cyclodextrin jigsaw and sets the stage for scientists to explore the mirror-image world of naturally occurring CDs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis of α-l-CD.
Fig. 2: Syntheses of β- and γ-l-CDs.
Fig. 3: Single-crystal X-ray crystallography.
Fig. 4: Single-crystal X-ray diffraction analysis of the β-d- and β-l-CD cocrystal.
Fig. 5: IECD spectroscopy.
Fig. 6: Chiral recognition.

Similar content being viewed by others

Data availability

All data that support the findings of this study are available in the main text and the Supplementary Information. X-Ray crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre (CCDC) under deposition numbers CCDC 2246203 (α-l-CD), 2246204 (β-l-CD), 2246205 (γ-l-CD) and 2266813 (β-d- and β-l-CD cocrystal). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. Source data are provided with this paper.

References

  1. Villiers, A. Sur la fermentation de la fécule par l’action du ferment butyrique. C. R. Hebd. Acad. Sci. Paris 112, 536–538 (1891).

    Google Scholar 

  2. Szejtli, J. Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1753 (1998).

    CAS  PubMed  Google Scholar 

  3. Crini, G. A history of cyclodextrins. Chem. Rev. 114, 10940–10975 (2014).

    CAS  PubMed  Google Scholar 

  4. Rekharsky, M. V. & Inoue, Y. Complexation thermodynamics of cyclodextrins. Chem. Rev. 98, 1875–1918 (1998).

    CAS  PubMed  Google Scholar 

  5. Liu, Z., Nalluri, S. K. M. & Stoddart, J. F. Surveying macrocyclic chemistry: from flexible crown ethers to rigid cyclophanes. Chem. Soc. Rev. 46, 2459–2478 (2017).

    CAS  PubMed  Google Scholar 

  6. Cram, D. J. The design of molecular hosts, guests, and their complexes (Nobel lecture). Angew. Chem. Int. Ed. Engl. 27, 1009–1020 (1988).

    Google Scholar 

  7. Lehn, J. -M. Supramolecular chemistry—scope and perspectives molecules, supermolecules, and molecular devices (Nobel lecture). Angew. Chem. Int. Ed. Engl. 27, 89–112 (1988).

    Google Scholar 

  8. Chen, Y. & Liu, Y. Cyclodextrin-based bioactive supramolecular assemblies. Chem. Soc. Rev. 39, 495–505 (2010).

    CAS  PubMed  Google Scholar 

  9. Chen, G. & Jiang, M. Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular self-assembly. Chem. Soc. Rev. 40, 2254–2266 (2011).

    CAS  PubMed  Google Scholar 

  10. Davis, M. E. & Brewster, M. E. Cyclodextrin-based pharmaceutics: past, present and future. Nat. Rev. Drug Discov. 3, 1023–1035 (2004).

    CAS  PubMed  Google Scholar 

  11. Nepogodiev, S. A. & Stoddart, J. F. Cyclodextrin-based catenanes and rotaxanes. Chem. Rev. 98, 1959–1976 (1998).

    CAS  PubMed  Google Scholar 

  12. Harada, A., Takashima, Y. & Yamaguchi, H. Cyclodextrin-based supramolecular polymers. Chem. Soc. Rev. 38, 875–882 (2009).

    CAS  PubMed  Google Scholar 

  13. Harada, A. Cyclodextrin-based molecular machines. Acc. Chem. Res. 34, 456–464 (2001).

    CAS  PubMed  Google Scholar 

  14. Saenger, W. et al. Structures of the common cyclodextrins and their larger analogues beyond the doughnut. Chem. Rev. 98, 1787–1802 (1998).

    CAS  PubMed  Google Scholar 

  15. Easton, C. J. & Lincoln, S. F. Chiral discrimination by modified cyclodextrins. Chem. Soc. Rev. 25, 163–170 (1996).

    CAS  Google Scholar 

  16. Tang, W. & Ng, S.-C. Facile synthesis of mono-6-amino-6-deoxy-α-, β-, γ-cyclodextrin hydrochlorides for molecular recognition, chiral separation and drug delivery. Nat. Protoc. 3, 691–697 (2008).

    CAS  PubMed  Google Scholar 

  17. Chen, L., Chen, Y., Zhang, Y. & Liu, Y. Photo‐controllable catalysis and chiral monosaccharide recognition induced by cyclodextrin derivatives. Angew. Chem. Int. Ed. 60, 7654–7658 (2021).

    CAS  Google Scholar 

  18. Armstrong, D. W., Ward, T. J., Armstrong, R. D. & Beesley, T. E. Separation of drug stereoisomers by the formation of β-cyclodextrin inclusion complexes. Science 232, 1132–1135 (1986).

    CAS  PubMed  Google Scholar 

  19. Armstrong, D. W., Li, W. & Pitha, J. Reversing enantioselectivity in capillary gas chromatography with polar and nonpolar cyclodextrin derivative phases. Anal. Chem. 62, 214–217 (1990).

    CAS  PubMed  Google Scholar 

  20. Tang, W. & Ng, S.-C. Synthesis of cationic single-isomer cyclodextrins for the chiral separation of amino acids and anionic pharmaceuticals. Nat. Protoc. 2, 3195–3200 (2007).

    CAS  PubMed  Google Scholar 

  21. Breslow, R. & Dong, S. D. Biomimetic reactions catalyzed by cyclodextrins and their derivatives. Chem. Rev. 98, 1997–2012 (1998).

    CAS  PubMed  Google Scholar 

  22. Takahashi, K. Organic reactions mediated by cyclodextrins. Chem. Rev. 98, 2013–2034 (1998).

    CAS  PubMed  Google Scholar 

  23. Guitet, M. et al. NHC‐capped cyclodextrins (ICyDs): insulated metal complexes, commutable multicoordination sphere, and cavity‐dependent catalysis. Angew. Chem. Int. Ed. 52, 7213–7218 (2013).

    CAS  Google Scholar 

  24. Xu, G. et al. Capturing the monomeric (L)CuH in NHC-capped cyclodextrin: cavity-controlled chemoselective hydrosilylation of α,β-unsaturated ketones. Angew. Chem. Int. Ed. 59, 7591–7597 (2020).

    CAS  Google Scholar 

  25. Tugny, C. et al. β-Cyclodextrin–NHC–gold (I) complex (β-ICyD) AuCl: a chiral nanoreactor for enantioselective and substrate-selective alkoxycyclization reactions. ACS Catal. 10, 5964–5972 (2020).

    CAS  Google Scholar 

  26. Huang, J., Zhang, X. & Armstrong, D. W. Highly efficient asymmetric direct stoichiometric aldol reactions on/in water. Angew. Chem. Int. Ed. 46, 9073–9077 (2007).

    CAS  Google Scholar 

  27. Ke, C. et al. Catalytic enantiodifferentiating photocyclodimerization of 2‐anthracenecarboxylic acid mediated by a non‐sensitizing chiral metallosupramolecular host. Angew. Chem. Int. Ed. 48, 6675–6677 (2009).

    CAS  Google Scholar 

  28. Wei, X. et al. Supramolecular photochirogenesis driven by higher-order complexation: enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylate to slipped cyclodimers via a 2:2 complex with β-cyclodextrin. J. Am. Chem. Soc. 140, 3959–3974 (2018).

    CAS  PubMed  Google Scholar 

  29. Ji, J. et al. An ultimate stereocontrol in supramolecular photochirogenesis: photocyclodimerization of 2-anthracenecarboxylate mediated by sulfur-linked β-cyclodextrin dimers. J. Am. Chem. Soc. 141, 9225–9238 (2019).

    CAS  PubMed  Google Scholar 

  30. Wei, X. et al. Synthesis of cyclodextrin derivatives for enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylate. Nat. Protoc. 17, 2494–2516 (2022).

    CAS  PubMed  Google Scholar 

  31. Chen, X.-Y. et al. Selective photodimerization in a cyclodextrin metal–organic framework. J. Am. Chem. Soc. 143, 9129–9139 (2021).

    CAS  PubMed  Google Scholar 

  32. Chen, A. X.-Y. et al. Site-selective C–H functionalization in a cyclodextrin metal–organic framework. Chem 10, 234–249 (2024).

    CAS  Google Scholar 

  33. Smaldone, R. A. et al. Metal–organic frameworks from edible natural products. Angew. Chem. Int. Ed. 49, 8630–8634 (2010).

    CAS  Google Scholar 

  34. Roy, I. & Stoddart, J. F. Cyclodextrin metal–organic frameworks and their applications. Acc. Chem. Res. 54, 1440–1453 (2021).

    CAS  PubMed  Google Scholar 

  35. Shigemitsu, H. et al. Cyclodextrins with multiple pyrenyl groups: an approach to organic molecules exhibiting bright excimer circularly polarized luminescence. Angew. Chem. Int. Ed. 61, e202114700 (2022).

    CAS  Google Scholar 

  36. Tu, C. et al. Host–guest complexation‐induced aggregation based on pyrene‐modified cyclodextrins for improved electronic circular dichroism and circularly polarized luminescence. Angew. Chem. Int. Ed. 61, e202203541 (2022).

    CAS  Google Scholar 

  37. Song, X., Zhu, X., Qiu, S., Tian, W. & Liu, M. Self‐assembly of adaptive chiral [1]rotaxane for thermo‐rulable circularly polarized luminescence. Angew. Chem. Int. Ed. 61, e202208574 (2022).

    CAS  Google Scholar 

  38. Hu, L., Zhu, X., Yang, C. & Liu, M. Two‐dimensional chiral polyrotaxane monolayer with emergent and steerable circularly polarized luminescence. Angew. Chem. Int. Ed. 61, e202114759 (2022).

    CAS  Google Scholar 

  39. Yang, S. et al. Dynamic enzymatic synthesis of γ-cyclodextrin using a photoremovable hydrazone template. Chem 7, 2190–2200 (2021).

    CAS  Google Scholar 

  40. Erichsen, A., Peters, G. H. J. & Beeren, S. R. Templated enzymatic synthesis of δ-cyclodextrin. J. Am. Chem. Soc. 145, 4882–4891 (2023).

    CAS  PubMed  Google Scholar 

  41. Ogawa, T. & Takahashi, Y. Total synthesis of α-cyclodextrin. Carbohydr. Res. 138, C5–C9 (1985).

    CAS  Google Scholar 

  42. Takahashi, Y. & Ogawa, T. Total synthesis of cyclomaltooctaose and an isomer of cyclomaltohexaose, cyclo{→6)-[α-D-Glcp-(1→4)]5-α-D-Glcp-(1-}.Carbohydr. Res. 169, 127–149 (1987).

    CAS  Google Scholar 

  43. Nicolaou, K. C., Vourloumis, D., Winssinger, N. & Baran, P. S. The art and science of total synthesis at the dawn of the twenty‐first century. Angew. Chem. Int. Ed. 39, 44–122 (2000).

    CAS  Google Scholar 

  44. Stoddart, J. F. Unnatural product synthesis. Nature 334, 10–11 (1988).

    Google Scholar 

  45. Ikuta, D. et al. Conformationally supple glucose monomers enable synthesis of the smallest cyclodextrins. Science 364, 674–677 (2019).

    CAS  PubMed  Google Scholar 

  46. Stoddart, J. F. From carbohydrates to enzyme analogues. Chem. Soc. Rev. 8, 85–142 (1979).

    CAS  Google Scholar 

  47. Gattuso, G., Nepogodiev, S. A. & Stoddart, J. F. Synthetic cyclic oligosaccharides. Chem. Rev. 98, 1919–1958 (1998).

    CAS  PubMed  Google Scholar 

  48. Bodine, K. D., Gin, D. Y. & Gin, M. S. Synthesis of readily modifiable cyclodextrin analogues via cyclodimerization of an alkynyl−azido trisaccharide. J. Am. Chem. Soc. 126, 1638–1639 (2004).

    CAS  PubMed  Google Scholar 

  49. Li, X. et al. Promoter-controlled synthesis and conformational analysis of cyclic mannosides up to a 32-mer. Angew. Chem. Int. Ed. 62, e202307851 (2023).

    CAS  Google Scholar 

  50. Boltje, T. J., Kim, J.-H., Park, J. & Boons, G.-J. Chiral-auxiliary-mediated 1,2-cis-glycosylations for the solid-supported synthesis of a biologically important branched α-glucan. Nat. Chem. 2, 552–557 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Yasomanee, J. P. & Demchenko, A. V. Hydrogen bond mediated aglycone delivery: synthesis of linear and branched α-glucans. Angew. Chem. Int. Ed. 53, 10453–10456 (2014).

    CAS  Google Scholar 

  52. Wang, L., Overkleeft, H. S., van der Marel, G. A. & Codée, J. D. C. Reagent controlled stereoselective synthesis of α-glucans. J. Am. Chem. Soc. 140, 4632–4638 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang, Y. et al. A new method for α-specific glucosylation and its application to the one-pot synthesis of a branched α-glucan. Org. Chem. Front. 6, 762–772 (2019).

    CAS  Google Scholar 

  54. Zhang, Y. et al. Merging reagent modulation and remote anchimeric assistance for glycosylation: highly stereoselective synthesis of α-glycans up to a 30-mer. Angew. Chem. Int. Ed. 60, 12597–12606 (2021).

    CAS  Google Scholar 

  55. Zhu, Y., Delbianco, M. & Seeberger, P. H. Automated assembly of starch and glycogen polysaccharides. J. Am. Chem. Soc. 143, 9758–9768 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang, C. et al. Halogen-bond-assisted radical activation of glycosyl donors enables mild and stereoconvergent 1,2-cis-glycosylation. Nat. Chem. 14, 686–694 (2022).

    CAS  PubMed  Google Scholar 

  57. Hettikankanamalage, A. A., Lassfolk, R., Ekholm, F. S., Leino, R. & Crich, D. Mechanisms of stereodirecting participation and ester migration from near and far in glycosylation and related reactions. Chem. Rev. 120, 7104–7151 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Huang, X., Huang, L., Wang, H. & Ye, X.-S. Iterative one‐pot synthesis of oligosaccharides. Angew. Chem. Int. Ed. 43, 5221–5224 (2004).

    CAS  Google Scholar 

  59. Wu, Y., Xiong, D.-C., Chen, S.-C., Wang, Y.-S. & Ye, X.-S. Total synthesis of mycobacterial arabinogalactan containing 92 monosaccharide units. Nat. Commun. 8, 14851 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Saouane, S. & Fabbiani, F. P. A. Structural elucidation of α-cyclodextrin-succinic acid pseudo dodecahydrate: expanding the packing types of α-cyclodextrin inclusion complexes. Crystals 6, 2 (2016).

    Google Scholar 

  61. Aree, T. & Chaichit, N. Crystal form III of β-cyclodextrin–ethanol inclusion complex: layer-type structure with dimeric motif. Carbohydr. Res. 343, 2285–2291 (2008).

    CAS  PubMed  Google Scholar 

  62. Steiner, T. & Saenger, W. Channel-type crystal packing in the very rare space group P4212 with Z’ = 3/4: crystal structure of the complex γ-cyclodextrin–methanol–n-hydrate. Acta Crystallogr. B 54, 450–455 (1998).

    Google Scholar 

  63. Thordarson, P. Determining association constants from titration experiments in supramolecular chemistry. Chem. Soc. Rev. 40, 1305–1323 (2011).

    CAS  PubMed  Google Scholar 

  64. Nowakowski, M. & Ejchart, A. Complex formation of fenchone with α-cyclodextrin: NMR titrations. J. Incl. Phenom. Macrocycl. Chem. 79, 337–342 (2014).

    CAS  PubMed  Google Scholar 

  65. Vidal, S. (ed) Protecting Groups: Strategies and Applications in Carbohydrate Chemistry (Wiley, 2019).

  66. Khan, A. R., Forgo, P., Stine, K. J. & D’Souza, V. T. Methods for selective modifications of cyclodextrins. Chem. Rev. 98, 1977–1996 (1998).

    CAS  PubMed  Google Scholar 

  67. Liu, J. et al. Programmed synthesis of hepta‐differentiated β‐cyclodextrin: 1 out of 117,655 arrangements. Angew. Chem. Int. Ed. 60, 12090–12096 (2021).

    CAS  Google Scholar 

  68. Chen, J., Chen, M. & Zhu, T. F. Directed evolution and selection of biostable l-DNA aptamers with a mirror-image DNA polymerase. Nat. Biotechnol. 40, 1601–1609 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Hahm, H. S. et al. Automated glycan assembly using the Glyconeer 2.1 synthesizer. Proc. Natl Acad. Sci. USA 114, E3385–E3389 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Yao, W. et al. Automated solution-phase multiplicative synthesis of complex glycans up to a 1,080-mer. Nat. Synth. 1, 854–863 (2022).

    Google Scholar 

  71. Cheng, H. & Wang, P. G. Machine assembly of carbohydrates with more than 1,000 sugar units. Nature 610, 266–267 (2022).

    CAS  PubMed  Google Scholar 

  72. Shishiuchi, R. et al. Discovery of α-l-glucosidase raises the possibility of α-l-glucosides in nature. ACS Omega 7, 47411–47423 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Northwestern University (NU, J.F.S.), the University of Hong Kong (J.F.S.) and the Robert A. Welch Foundation (Y-0026 to D.W.A.) are acknowledged for financial support. This work made use of the Integrated Molecular Structure Education and Research Center (IMSERC) at NU, which receives support from the NIH (1S10OD012016-01/1S10RR019071-01A1), Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-1542205), the State of Illinois and the International Institute for Nanotechnology (IIN). Use of resources of the Keck Biophysics Facility was supported in part by National Cancer Institute award CCSG-P30-CA060553 to the Robert H. Lurie Comprehensive Cancer Center at NU.

Author information

Authors and Affiliations

Authors

Contributions

Y.W. and J.F.S. conceived the study and designed experiments. Y.W. performed research under J.F.S.’s guidance. S.A., G.W. and D.W.A. contributed to the chiral recognition experiments. H.H. conducted density functional theory calculations. C.T. contributed to the IECD spectroscopy and X-ray crystallographic analysis. C.L.S. collected and solved the X-ray diffraction data. X.L., H.W., Q.-H.G., Y.Q., A.X.-Y.C., Y.J., R.Z. and A.H.G.D. commented on the data and all authors contributed to data analysis. Y.W. and J.F.S. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to J. Fraser Stoddart.

Ethics declarations

Competing interests

Y.W. and J.F.S. have filed a patent application with Northwestern University (Innovation and New Ventures Office Reference No. NU 2024-020) based on this research. The other authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Sophie Beeren, William Harrison, Chang-Chun Ling and Peng George Wang for their contribution to the peer review of this work. Primary handling editor: Peter Seavill.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Publisher’s note The editorial team of Nature Synthesis declare that Alison Stoddart has had no involvement in the editorial handling of this article.

Supplementary information

Supplementary Information

Experimental Details, Supplementary Figs. 1–48 and Schemes 1–17.

Supplementary Data 1

X-ray crystallographic data for α-l-CD, CCDC 2246203.

Supplementary Data 2

X-ray crystallographic data for β-l-CD, CCDC 2246204.

Supplementary Data 3

X-ray crystallographic data for γ-l-CD, CCDC 2246205.

Supplementary Data 4

X-ray crystallographic data for β-d- and β-l-CD cocrystal, CCDC 2266813.

Source data

Source Data Fig. 5

Source data for Fig. 5.

Source Data Fig. 6

Source data for Fig. 6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Aslani, S., Han, H. et al. Mirror-image cyclodextrins. Nat. Synth (2024). https://doi.org/10.1038/s44160-024-00495-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44160-024-00495-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing