Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

H2O2-mediated electrosynthesis of nitrate from air

Subjects

Abstract

Renewable electricity-driven electrochemical nitrogen oxidation is a promising alternative to traditional Haber–Bosch and Ostwald processes to directly synthesize nitrate from nitrogen. However, its efficiency is hindered by strong competition from the oxygen evolution reaction in aqueous environments, along with a deficiency in standardized testing protocols. Here we present an efficient approach for nitrogen oxidation, substituting the oxygen evolution reaction with hydroxyl radicals (·OH) generated through hydrogen peroxide decomposition to serve as an active oxygen source. Electrochemical tests demonstrate that the nitrogen oxidation, facilitated by ·OH, can achieve a Faradaic efficiency of 25.6% and a nitrate yield of 8.3 nmol s−1 cm−2. Furthermore, we employed in situ electrochemical mass spectrometry, gas-phase infrared and electron paramagnetic resonance spectroscopy to establish a comprehensive set of benchmarks to confirm the authenticity of nitrogen activation and to examine the reaction mechanism mediated by ·OH. Techno-economic analysis underscores the promising feasibility and sustainable economic value of the presented method.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Oxygen source and thermodynamic energy barriers for the NOR.
Fig. 2: A benchmark for identifying and eliminating false positives due to nitrogen contamination.
Fig. 3: Electrochemical performance and reaction mechanisms.
Fig. 4: Expanded scope of catalysts.
Fig. 5: Techno-economic analysis and feasibility validation.

Similar content being viewed by others

Data availability

The data supporting the finding of the study are available in the paper and its Supplementary Information. Source data are provided with this paper and in the Mendeley Data repository at https://doi.org/10.17632/kcwgbv68y6.1 (ref. 50).

References

  1. Markit, I. Nitric Acid-Chemical Economics Handbook (IHS Markit, 2015).

  2. Chen, J. G. et al. Beyond fossil fuel–driven nitrogen transformations. Science 360, eaar6611 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Canfield, D. E., Glazer, A. N. & Falkowski, P. G. The evolution and future of Earth’s nitrogen cycle. Science 330, 192–196 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Galloway, J. N. et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320, 889–892 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Li, L. et al. Efficient nitrogen fixation to ammonia through integration of plasma oxidation with electrocatalytic reduction. Angew. Chem. Int. Ed. 60, 14131–14137 (2021).

    Article  CAS  Google Scholar 

  6. Wang, Y., Li, T., Yu, Y. & Zhang, B. Electrochemical synthesis of nitric acid from nitrogen oxidation. Angew. Chem. Int. Ed. 61, e202115409 (2022).

    Article  CAS  Google Scholar 

  7. Iriawan, H. et al. Methods for nitrogen activation by reduction and oxidation. Nat. Rev. Methods Primers 1, 56 (2021).

    Article  CAS  Google Scholar 

  8. Nie, Z. et al. Catalytic kinetics regulation for enhanced electrochemical nitrogen oxidation by Ru-nanoclusters-coupled Mn3O4 catalysts decorated with atomically dispersed Ru atoms. Adv. Mater. 34, 2108180 (2022).

    Article  CAS  Google Scholar 

  9. Kuang, M. et al. Efficient nitrate synthesis via ambient nitrogen oxidation with Ru-doped TiO2/RuO2 electrocatalysts. Adv. Mater. 32, 2002189 (2020).

    Article  CAS  Google Scholar 

  10. Armstrong, D. A. et al. Standard electrode potentials involving radicals in aqueous solution: inorganic radicals (IUPAC Technical Report). Pure Appl. Chem. 87, 1139–1150 (2015).

    Article  CAS  Google Scholar 

  11. Jin, H. et al. Dynamic rhenium dopant boosts ruthenium oxide for durable oxygen evolution. Nat. Commun. 14, 354 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fei, H. et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 1, 63–72 (2018).

    Article  CAS  Google Scholar 

  13. Grdeń, M., Łukaszewski, M., Jerkiewicz, G. & Czerwiński, A. Electrochemical behaviour of palladium electrode: oxidation, electrodissolution and ionic adsorption. Electrochim. Acta 53, 7583–7598 (2008).

    Article  Google Scholar 

  14. Plauck, A., Stangland, E. E., Dumesic, J. A. & Mavrikakis, M. Active sites and mechanisms for H2O2 decomposition over Pd catalysts. Proc. Natl Acad. Sci. USA 113, E1973–E1982 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li, J., Staykov, A., Ishihara, T. & Yoshizawa, K. Theoretical study of the decomposition and hydrogenation of H2O2 on Pd and Au@Pd surfaces: understanding toward high selectivity of H2O2 synthesis. J. Phys. Chem. C 115, 7392–7398 (2011).

    Article  CAS  Google Scholar 

  16. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  Google Scholar 

  17. Ignarro, L. J., Fukuto, J. M., Griscavage, J. M., Rogers, N. E. & Byrns, R. E. Oxidation of nitric oxide in aqueous solution to nitrite but not nitrate: comparison with enzymatically formed nitric oxide from l-arginine. Proc. Natl Acad. Sci. USA 90, 8103–8107 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Anand, M., Abraham, C. S. & Nørskov, J. K. Electrochemical oxidation of molecular nitrogen to nitric acid-towards a molecular level understanding of the challenges. Chem. Sci. 12, 6442–6448 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wan, H., Bagger, A. & Rossmeisl, J. Limitations of electrochemical nitrogen oxidation toward nitrate. J. Phys. Chem. Lett. 13, 8928–8934 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Guo, Y. et al. Electrochemical nitrate production via nitrogen oxidation with atomically dispersed Fe on N-doped carbon nanosheets. ACS Nano 16, 655–663 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. A checklist for reproducibility in electrochemical nitrogen fixation. Nat. Commun. 13, 4642 (2022).

  22. Choi, J. et al. Identification and elimination of false positives in electrochemical nitrogen reduction studies. Nat. Commun. 11, 5546 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee, S. A., Lee, M. G. & Jang, H. W. Catalysts for electrochemical ammonia oxidation: trend, challenge, and promise. Sci. China Mater. 65, 3334–3352 (2022).

    Article  Google Scholar 

  24. Liu, H. Y. et al. Electrochemical ammonia oxidation with molecular catalysts. ACS Catal. 13, 4675–4682 (2023).

    Article  CAS  Google Scholar 

  25. Xia, Y. & Zweier, J. L. Direct measurement of nitric oxide generation from nitric oxide synthase. Proc. Natl Acad. Sci. USA 94, 12705–12710 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bordignon, E. EPR spectroscopy of nitroxide spin probes. eMagRes 6, 235–254 (2017).

    Article  CAS  Google Scholar 

  27. Li, Y. et al. Ternary PtIrNi catalysts for efficient electrochemical ammonia oxidation. ACS Catal. 10, 3945–3957 (2020).

    Article  CAS  Google Scholar 

  28. Dong, K. et al. Plasma-induced defective TiO2-x with oxygen vacancies: a high-active and robust bifunctional catalyst toward H2O2 electrosynthesis. Chem Catal. 1, 1437–1448 (2021).

    Article  CAS  Google Scholar 

  29. Zhang, X. et al. Photothermal-assisted photocatalytic nitrogen oxidation to nitric acid on palladium-decorated titanium oxide. Adv. Energy Mater. 12, 2103740 (2022).

    Article  CAS  Google Scholar 

  30. Hu, X. et al. Simultaneous generation of H2O2 and formate by co-electrolysis of water and CO2 over bifunctional Zn/SnO2 nanodots. Angew. Chem. Int. Ed. 62, e202304050 (2023).

    Article  CAS  Google Scholar 

  31. Yu, M. et al. Self-supported Mo-doped TiO2 electrode for ambient electrocatalytic nitrogen oxidation. Electrochim. Acta 435, 141333 (2022).

    Article  CAS  Google Scholar 

  32. MacFarlane, D. R. et al. A roadmap to the ammonia economy. Joule 4, 1186–1205 (2020).

    Article  CAS  Google Scholar 

  33. Lim, J., Fernández, C. A., Lee, S. W. & Hatzell, M. C. Ammonia and nitric acid demands for fertilizer use in 2050. ACS Energy Lett. 6, 3676–3685 (2021).

    Article  CAS  Google Scholar 

  34. Dong, K. et al. Epoxidation of olefins enabled by an electro-organic system. Green Chem. 24, 8264–8269 (2022).

    Article  CAS  Google Scholar 

  35. Dong, K. et al. Noble-metal-free electrocatalysts toward H2O2 production. J. Mater. Chem. A 8, 23123–23141 (2020).

    Article  CAS  Google Scholar 

  36. Chen, W., He, F. & Chen, Y. X. in Encyclopedia of Solid–Liquid Interfaces, 497–513 (Elsevier, 2023).

  37. Abdiaziz, K., Salvadori, E., Sokol, K. P., Reisner, E. & Roessler, M. M. Protein film electrochemical EPR spectroscopy as a technique to investigate redox reactions in biomolecules. Chem. Commun. 55, 8840–8843 (2019).

    Article  CAS  Google Scholar 

  38. Chen, L. et al. Accurate identification of radicals by in-situ electron paramagnetic resonance in ultraviolet-based homogenous advanced oxidation processes. Water Res. 221, 118747 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Dong, K. et al. Conductive two-dimensional magnesium metal–organic frameworks for high-efficiency O2 electroreduction to H2O2. ACS Catal. 12, 6092–6099 (2022).

    Article  CAS  Google Scholar 

  40. Dong, K. et al. Honeycomb carbon nanofibers: a superhydrophilic O2-entrapping electrocatalyst enables ultrahigh mass activity for the two-electron oxygen reduction reaction. Angew. Chem. Int. Ed. 60, 10583–10587 (2021).

    Article  CAS  Google Scholar 

  41. Hammer, B., Hansen, L. B. & Nørskov, J. K. Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals. Phys. Rev. B 59, 7413–7421 (1999).

    Article  Google Scholar 

  42. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  43. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  44. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  PubMed  Google Scholar 

  45. Henkelman, G., Uberuaga, B. P. & Jónsson, H. Climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  CAS  Google Scholar 

  46. Monkhorst, H. J. & Pack, J. D. Special points for Brillonin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  47. NIST Standard Reference Database Number 69. National Institute of Standards and Technology http://webbook.nist.gov/chemistry/ (2023).

  48. Wang, V., Xu, N., Liu, J. C., Tang, G. & Geng, W. T. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 267, 108033 (2021).

    Article  CAS  Google Scholar 

  49. Mathew, K., Sundararaman, R., Letchworth-Weaver, K., Arias, T. A. & Hennig, R. G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 140, 084106 (2014).

    Article  PubMed  Google Scholar 

  50. Dong, K. H2O2-mediated electrosynthesis of nitrate from air. Mendeley Data https://doi.org/10.17632/kcwgbv68y6.1 (2024).

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (nos. 22072015 and 21927811), the Free Exploration Project of Frontier Technology for Laoshan Laboratory (no. 16-02), the Program for Science & Technology Innovation Talents in Universities of Henan Province (no. 20HASTIT028) and China Postdoctoral Science Foundation (2023M731175 and GZB20230232). We thank S. Li from Nanjing University of Aeronautics and Astronautics and J. Nie from Jilin University for their invaluable contributions in the initial phases of the experiment. Furthermore, we appreciate X. Wang from Gaossunion Corporation for designing the in situ electrochemical electrolytic cell.

Author information

Authors and Affiliations

Authors

Contributions

K.D. performed the catalyst preparation, characterizations and catalytic tests. D.M. and Haobo Li conceived and conducted the theoretical investigation of the nitrogen oxidation mechanism. K.D., Y.Y., Huangjingwei Li, S.S., Y.W., Y.L., D.Z. and Qian Liu contributed to the structure characterizations and data analysis. K.D., Quan Li, D.M., X.S. and B.T. designed this study and wrote the paper. All authors contributed and reviewed the paper.

Corresponding authors

Correspondence to Quan Li, Dongwei Ma, Xuping Sun or Bo Tang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks the anonymous reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alexandra Groves, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–39, Discussion, Technical economic analysis and Tables 1–4.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, K., Yao, Y., Li, H. et al. H2O2-mediated electrosynthesis of nitrate from air. Nat. Synth (2024). https://doi.org/10.1038/s44160-024-00522-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44160-024-00522-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing