Materials science articles within Nature Communications

Featured

  • Comment
    | Open Access

    Roll-to-Roll (R2R) coating is a technology that potentially enhances throughput, reduces costs, and accommodates flexible substrates for fabricating various types of solar cells and modules. Here, authors discuss the R2R revolution to tackle the industrial leap for perovskite photovoltaic devices.

    • Ershad Parvazian
    •  & Trystan Watson
  • Article
    | Open Access

    Here Pantazopoulos, Feist, García-Vidal, and Kamra explore the combination spin, phonon and photon coupling in a system of magnetic nanoparticles, and find that it leads to an emergent spin-spin interaction. This interaction is long-range and leads to an unconventional form of magnetism that can exhibit strong magnetization at temperatures very close to the critical temperature.

    • Petros Andreas Pantazopoulos
    • , Johannes Feist
    •  & Akashdeep Kamra
  • Article
    | Open Access

    The coupling between topological electronic properties and magnetic order offers a promising route for magnetoelectric control with great potential for both applications and fundamental physics. Here, Susilo et al demonstrate the rich tunability of magnetic properties in nodal-line magnetic semiconductor Mn3Si2Te6 using pressure as control knob.

    • Resta A. Susilo
    • , Chang Il Kwon
    •  & Jun Sung Kim
  • Article
    | Open Access

    Inspired by fireflies, a bimodal information indication system using a photochemical afterglow material within a photonic crystal matrix is developed to display both static and changing information, such as sample type and degree of degradation.

    • Hanwen Huang
    • , Jiamiao Yin
    •  & Changchun Wang
  • Article
    | Open Access

    Authors predict polar Bloch points with negative capacitance in tensile-strained ultrathin ferroelectric PbTiO3 film by phase-field simulations, observing their polarization structures by scanning transmission electron microscopic imaging.

    • Yu-Jia Wang
    • , Yan-Peng Feng
    •  & Xiu-Liang Ma
  • Article
    | Open Access

    Conventional material processing methods often suffer by strength-ductility trade-off. Here, the authors show high-pressure and high-temperature treatment can transform an eutectic high entropy alloy to having a hierarchical microstructure with simultaneous enhancements of strength and ductility.

    • Yao Tang
    • , Haikuo Wang
    •  & Haofei Zhou
  • Article
    | Open Access

    Previous work proposed the Berry curvature dipole as the mechanism of the nonlinear Hall effect. Lee et al. establish the sign-changing Berry curvature hot spots from spin-orbit split bands as the origin of the Berry curvature dipole and link it to the nonlinear Hall effect in the topological semimetal NbIrTe4.

    • Ji-Eun Lee
    • , Aifeng Wang
    •  & Hyejin Ryu
  • Article
    | Open Access

    Proton conduction is one of the interesting applications of hydrogen-bonded organic frameworks. Here, the authors report hydrogen-bonded organic framework that can be transformed into glassy state, effectively mitigating grain boundary effects, and significantly enhancing proton conduction performance.

    • Feng-Fan Yang
    • , Xiao-Lu Wang
    •  & Linfeng Liang
  • Article
    | Open Access

    Supramolecular polymer networks have unique and useful properties due to the reversible nature of their cross-links. Here, the authors show that when two distinct supramolecular interaction classes exist within a single cross-link, new functions can result.

    • David J. Lundberg
    • , Christopher M. Brown
    •  & Jeremiah A. Johnson
  • Article
    | Open Access

    Here, the authors show a facile and sustainable 3D printing by utilizing a reversible salting-out effect on poly(N-isopropylacrylamide) (PNIPAM) solutions. Aqueous salt solutions lower the phase transition temperature of PNIPAM solutions below 10 °C and instantly solidify the PNIPAM solutions upon contact.

    • Donghwan Ji
    • , Joseph Liu
    •  & Jinhye Bae
  • Article
    | Open Access

    Developing stable water oxidation catalysts is of great importance for proton-exchange membrane water electrolyzers. Here the authors report a bicontinuous nanoreactor composed of multiscale defected RuO2 nanocrystals for robust acidic water oxidation reactivity.

    • Ding Chen
    • , Ruohan Yu
    •  & Shichun Mu
  • Article
    | Open Access

    Here the authors identify a generic coupling in phase-separated liquids between motility and phase equilibria perturbations: phase-separated droplets swim to their dissolution. This suggests alternative transport mechanism for biomolecular condensates.

    • Etienne Jambon-Puillet
    • , Andrea Testa
    •  & Eric R. Dufresne
  • Article
    | Open Access

    Solid polymer electrolytes containing N,N-dimethylformamide (DMF) exhibit improved Li+ conductivity but poor cycle life due to incompatibility between the Li metal anode and DMF. Here, the authors report a polymer electrolyte composited with Hofmann-DMF complex that achieves both high Li+ conductivity and long cycle life.

    • Yanfei Zhu
    • , Zhoujie Lao
    •  & Guangmin Zhou
  • Article
    | Open Access

    Physicochemical heterogeneity poses a significant constraint in photocatalyst advancement. Here the authors introduce a multimodal optical microscopy platform to assess activity and defects concurrently in photoelectrocatalysts, revealing that disorder can unexpectedly enhance local photoelectrocatalytic performance in certain instances.

    • Camilo A. Mesa
    • , Michael Sachs
    •  & Raj Pandya
  • Article
    | Open Access

    The self-assembly of nanocrystals into checkerboard lattice patterns is difficult to control. Here, the authors investigate the formation of such patterns from hydrophilic/hydrophobic bifunctionalized Ag nanocubes and use multiscale simulations to understand the effects of physical forces.

    • Yufei Wang
    • , Yilong Zhou
    •  & Andrea R. Tao
  • Article
    | Open Access

    Strategies to produce supramolecular glass and the study of its intrinsic structure and mechanical properties remains largely unexplored. Here, the authors prepare a supramolecular glass via the host–guest recognition between methyl-β-cyclodextrin and para-hydroxybenzoic acid with recyclability, compatibility, and thermal processability.

    • Changyong Cai
    • , Shuanggen Wu
    •  & Shengyi Dong
  • Article
    | Open Access

    The synthesis of covalent organic frameworks (COFs) by a soft-template methodology is challenging. Here, the authors attach the soft templates to the COFs backbone via ion bonds, avoiding crystallization incompatibilities and allowing subsequent removal of the template by ion exchange for enhanced U(VI)/Th(IV) adsorption performance.

    • Ningning He
    • , Yingdi Zou
    •  & Lijian Ma
  • Article
    | Open Access

    The authors study a YbCoIn5/CeCoIn5/YbRhIn5 heterostructure. Using non-reciprocity in the second harmonic transport response, they demonstrate the existence of a specific form of finite-momentum pairing called a helical superconducting state, where the phase of the order parameter is spontaneously spatially modulated.

    • T. Asaba
    • , M. Naritsuka
    •  & Y. Matsuda
  • Article
    | Open Access

    Dual wavelength vat photopolymerization has emerged as a powerful approach to create multimaterial objects but require changing the resin during the printing process. Here, the authors develop a method of dual-wavelength 3D printing that can directly access multicolor parts without requiring changing of resin feedstocks or introduction of new materials during the printing process.

    • Kyle C. H. Chin
    • , Grant Ovsepyan
    •  & Andrew J. Boydston
  • Article
    | Open Access

    Granular materials exhibit yielding behaviors rather different from glasses that can be elastic. Here, Yuan et al. show a cross-over from creep to diffusive dynamics in three-dimensional granular systems under cyclic shear and that the relaxation process depends on the roughness of the constituent particles.

    • Ye Yuan
    • , Zhikun Zeng
    •  & Yujie Wang
  • Review Article
    | Open Access

    The knowledge gained from industrial catalysis benefits advancements of nanocatalytic medicines. Here the authors review the similarities, differences and connections in catalytic reactions between industrial and medical applications to support deep understanding and rational design of nanocatalytic medicines.

    • Zhaokui Jin
    • , Lingdong Jiang
    •  & Qianjun He
  • Article
    | Open Access

    The inherent instability of poly(sulfur) renders the conversion of elementary sulfur into sulfur-rich polymers challenging which limits the use of this industrial by-product. Here, the authors demonstrate that inorganic sulfur can be utilized by copolymerizing with cyclic disulfides, producing high-performance thermoplastic elastomers with self-healing ability and degradability.

    • Yuanxin Deng
    • , Zhengtie Huang
    •  & Da-Hui Qu
  • Article
    | Open Access

    In this work, authors propose a flash Joule heating-based process for meat preservation, enabled by the formation of a thin, microbe-inactivated, and dehydrated layer on the surface. The method is energetically efficient and shown to significantly extend the food shelf life while maintaining food freshness.

    • Yimin Mao
    • , Peihua Ma
    •  & Liangbing Hu
  • Article
    | Open Access

    Despite the use of amine-functionalized polymers as metal adsorbents, they are generally ineffective at recovering precious metals. Here the authors prepare a star-shaped, hydrazide-functionalized polymer as a recoverable standalone adsorbent with high precious metal adsorption capability/selectivity and practical feasibility.

    • Seung Su Shin
    • , Youngkyun Jung
    •  & Jung-Hyun Lee
  • Article
    | Open Access

    Low-dimensional ferroelectric systems are predicted to have topologically nontrivial polar structures, such as vortices or skyrmions. Here authors present atomic-scale 3D topological polar structures in BaTiO3 nanoparticles using atomic electron tomography and revealed their size-dependent transitions.

    • Chaehwa Jeong
    • , Juhyeok Lee
    •  & Yongsoo Yang
  • Article
    | Open Access

    Here, the authors report the observation of an interlayer plasmon polaron in heterostructures composed of graphene and monolayer WS2. This is manifested in the ARPES spectra as a strong quasiparticle peak accompanied by several carrier density-dependent shake-off replicas around the WS2 conduction band minimum.

    • Søren Ulstrup
    • , Yann in ’t Veld
    •  & Jyoti Katoch
  • Article
    | Open Access

    Stabilizing non-trivial magnetic spin textures at room temperature remains challenging. Here, the authors propose introducing magnetic atoms into the van der Waals gap of 2D magnets Fe3GaTe2 to stabilize the magnetic spin textures beyond skyrmion.

    • Hongrui Zhang
    • , Yu-Tsun Shao
    •  & Ramamoorthy Ramesh
  • Article
    | Open Access

    Improving mass transfer through hierarchically porous synthetic materials is a great challenge. Here the authors address this by expanding the original Murray’s law, a biomimetic principle defining the branching of veins in living structures.

    • Binghan Zhou
    • , Qian Cheng
    •  & Tawfique Hasan
  • Article
    | Open Access

    Polarization reversal dynamics in sliding ferroelectrics is important for the application in slidetronics. Here, the authors observe the interlayer directional sliding induced polarization switching with simultaneous hysteresis response in γ-InSe:Y.

    • Fengrui Sui
    • , Haoyang Li
    •  & Chungang Duan
  • Article
    | Open Access

    Previous measurements of FeSe0.45Te0.55 found one-dimensional (1D) defects that were interpretated as domain walls hosting propagating Majorana topological modes. Here, the authors reveal that these 1D defects correspond to sub-surface debris and show that the filling of the superconducting gap on these defects is topologically trivial.

    • A. Mesaros
    • , G. D. Gu
    •  & F. Massee
  • Article
    | Open Access

    Molecular switches are ubiquitous in the biochemistry regulatory network. Here, the authors construct synthetic molecular switches controlled by DNA-modifying enzymes such as DNA polymerase and nicking endonuclease to control and cascade assembly and disassembly.

    • Hong Kang
    • , Yuexuan Yang
    •  & Bryan Wei
  • Article
    | Open Access

    The efficient encapsulation of guests by coordination cages in the solid state is prevented by their flexibility, dynamicity, and metal-ligand bond reversibility. Here, the authors report coordination cages integrated into poly(ionic liquid)s to control swelling and mechanical properties of the gels and develop efficient and regenerable supramolecular separation materials.

    • Xiang Zhang
    • , Dawei Zhang
    •  & Mingyuan He