Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Complete hydrogenolysis of mixed plastic wastes

Abstract

The accumulation of plastic waste in the environment has led to a global crisis with severe consequences for wildlife and ecosystems. Upcycling offers a promising solution for reducing plastic waste by converting it into valuable chemicals and fuels. Real-life plastic waste exists as complex mixtures of different types of plastic, which poses a key challenge for efficient upcycling. Here, by using sunlight as the sole energy source, we report a thermocatalytic approach for transforming a plastic waste mixture collected from daily usage into methane and HCl using an earth-abundant Ni-based catalyst. This process successfully converted 1.03 g of a plastic waste mixture, containing five types of polyolefin, polyester and polyvinyl chloride, into 1.08 g of methane (yieldC 98%) and 0.045 g of HCl (yieldCl 91%). Catalyst deactivation caused by chlorine poisoning is prevented through the temperature-ramped process driven by the diurnal sunlight cycle, ensuring sustained catalytic activity over a period of 10 days.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of the sunlight-driven catalytic system for complete hydrogenolysis of plastic waste.
Fig. 2: Catalytic performance on the hydrogenolysis of plastics and ethane.
Fig. 3: Catalytic transformation of plastics by sunlight-driven, temperature-programmed and constant-temperature processes.
Fig. 4: The mass spectra of the temperature-programmed catalytic hydrogenolysis of different plastics.

Similar content being viewed by others

Data availability

Source data are provided with this paper.

References

  1. Stubbins, A., Law, K. L., Muñoz, S. E., Bianchi, T. S. & Zhu, L. Plastics in the Earth system. Science 373, 51–55 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Santos, R. G., Machovsky-Capuska, G. E. & Andrades, R. Plastic ingestion as an evolutionary trap: toward a holistic understanding. Science 373, 56–60 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. MacLeod, M., Arp, H. P. H., Tekman, M. B. & Jahnke, A. The global threat from plastic pollution. Science 373, 61–65 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Korley, L. T. J., Epps, T. H., Helms, B. A. & Ryan, A. J. Toward polymer upcycling—adding value and tackling circularity. Science 373, 66–69 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Geyer, R. in Plastic Waste and Recycling (ed. Letcher, T. M.) Ch. 2, 13–32 (Academic Press, 2020).

  6. Jehanno, C. et al. Critical advances and future opportunities in upcycling commodity polymers. Nature 603, 803–814 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, F. et al. Polyethylene upcycling to long-chain alkylaromatics by tandem hydrogenolysis/aromatization. Science 370, 437–441 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Conk, R. J. et al. Catalytic deconstruction of waste polyethylene with ethylene to form propylene. Science 377, 1561–1566 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Sullivan, K. P. et al. Mixed plastics waste valorization through tandem chemical oxidation and biological funneling. Science 378, 207–211 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, W. et al. Low-temperature upcycling of polyolefins into liquid alkanes via tandem cracking-alkylation. Science 379, 807–811 (2023).

    Article  CAS  PubMed  Google Scholar 

  11. Wu, X. et al. Size-controlled nanoparticles embedded in a mesoporous architecture leading to efficient and selective hydrogenolysis of polyolefins. J. Am. Chem. Soc. 144, 5323–5334 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Tamura, M. et al. Structure-activity relationship in hydrogenolysis of polyolefins over Ru/support catalysts. Appl. Catal. B 318, 121870 (2022).

    Article  CAS  Google Scholar 

  13. Zichittella, G. et al. Hydrogenolysis of polyethylene and polypropylene into propane over cobalt-based catalysts. JACS Au 2, 2259–2268 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu, S., Kots, P. A., Vance, B. C., Danielson, A. & Vlachos, D. G. Plastic waste to fuels by hydrocracking at mild conditions. Sci. Adv. 7, eabf8283 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Jia, C. et al. Deconstruction of high-density polyethylene into liquid hydrocarbon fuels and lubricants by hydrogenolysis over Ru catalyst. Chem. Catal. 1, 437–455 (2021).

    Article  CAS  Google Scholar 

  16. Sun, M. et al. Efficient upgrading of polyolefin plastics into C5–C12 gasoline alkanes over a Pt/W/Beta catalyst. Sustain. Energy Fuels 6, 271–275 (2022).

    Article  CAS  Google Scholar 

  17. Lee, W.-T. et al. Catalytic hydrocracking of synthetic polymers into grid-compatible gas streams. Cell Rep. Phys. Sci. 2, 100332 (2021).

    Article  CAS  Google Scholar 

  18. Vance, B. C., Kots, P. A., Wang, C., Granite, J. E. & Vlachos, D. G. Ni/SiO2 catalysts for polyolefin deconstruction via the divergent hydrogenolysis mechanism. Appl. Catal. B 322, 122138 (2023).

    Article  CAS  Google Scholar 

  19. Wang, N. M. et al. Chemical recycling of polyethylene by tandem catalytic conversion to propylene. J. Am. Chem. Soc. 144, 18526–18531 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. Walker, T. W. et al. Recycling of multilayer plastic packaging materials by solvent-targeted recovery and precipitation. Sci. Adv. 6, eaba7599 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jehanno, C. et al. Selective chemical upcycling of mixed plastics guided by a thermally stable organocatalyst. Angew. Chem. Int. Ed. 60, 6710–6717 (2021).

    Article  CAS  Google Scholar 

  22. Paucar-Sánchez, M. F. et al. Thermal and catalytic pyrolysis of a real mixture of post-consumer plastic waste: an analysis of the gasoline-range product. Process Saf. Environ. Prot. 168, 1201–1211 (2022).

    Article  Google Scholar 

  23. Martínez-Narro, G., Prasertcharoensuk, P., Diaz-Silvarrey, L. S., Dixon, L. & Phan, A. N. Chemical recycling of mixed plastic waste via catalytic pyrolysis. J. Environ. Chem. Eng. 10, 108494 (2022).

    Article  Google Scholar 

  24. Yu, J., Sun, L., Ma, C., Qiao, Y. & Yao, H. Thermal degradation of PVC: a review. Waste Manag. 48, 300–314 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Ye, L., Li, T. & Hong, L. Co-pyrolysis of Fe3O4-poly(vinyl chloride) (PVC) mixtures: mitigation of chlorine emissions during PVC recycling. Waste Manag. 126, 832–842 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Fagnani, D. E., Kim, D., Camarero, S. I., Alfaro, J. F. & McNeil, A. J. Using waste poly(vinyl chloride) to synthesize chloroarenes by plasticizer-mediated electro(de)chlorination. Nat. Chem. 15, 222–229 (2022).

    Article  PubMed  Google Scholar 

  27. Argyle, M. & Bartholomew, C. Heterogeneous catalyst deactivation and regeneration: a review. Catalysts 5, 145–269 (2015).

    Article  CAS  Google Scholar 

  28. Gracia, F. J., Miller, J. T., Kropf, A. J. & Wolf, E. E. Kinetics, FTIR, and controlled atmosphere EXAFS study of the effect of chlorine on Pt-supported catalysts during oxidation reactions. J. Catal. 209, 341–354 (2002).

    Article  CAS  Google Scholar 

  29. Gravil, P. A. & Toulhoat, H. Hydrogen, sulphur and chlorine coadsorption on Pd(111): a theoretical study of poisoning and promotion. Surf. Sci. 430, 176–191 (1999).

    Article  CAS  Google Scholar 

  30. Chu, S. et al. Photocatalytic conversion of plastic waste: from photodegradation to photosynthesis. Adv. Energy Mater. 12, 2200435 (2022).

    Article  CAS  Google Scholar 

  31. Xu, J. et al. Plastics-to-syngas photocatalysed by Co–Ga2O3 nanosheets. Natl Sci. Rev. 9, nwac011 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bhattacharjee, S. et al. Photoelectrochemical CO2-to-fuel conversion with simultaneous plastic reforming. Nat. Synth. 2, 182–192 (2023).

    Article  Google Scholar 

  33. Kikuchi, E. & Morita, Y. Hydrogenolysis of n-pentane on nickel catalyst. J. Catal. 15, 217–223 (1969).

    Article  CAS  Google Scholar 

  34. Leclercq, G., Leclercq, L., Bouleau, L. M., Pietrzyk, S. & Maurel, R. Hydrogenolysis of saturated hydrocarbons IV. Kinetics of the hydrogenolysis of ethane, propane, butane, and isobutane over nickel. J. Catal. 88, 8–17 (1984).

    Article  CAS  Google Scholar 

  35. Galvagno, S., Schwank, J., Gubitosa, G. & Tauszik, G. R. Ethane and propane hydrogenolysis on Ru catalysts. J. Chem. Soc. Faraday Trans. 1 78, 2509–2520 (1982).

    Article  CAS  Google Scholar 

  36. Bond, G. C. & Yide, X. Hydrogenolysis of alkanes. Part 2.—Hydrogenolysis of n-butane over variously treated Ru/TiO2 catalysts. J. Chem. Soc. Faraday Trans. 1 80, 3103–3118 (1984).

    Article  CAS  Google Scholar 

  37. Kempling, J. C. & Anderson, R. B. Hydrogenolysis of n-butane on supported ruthenium. Ind. Eng. Chem. Process Des. Dev. 9, 116–120 (1970).

    Article  CAS  Google Scholar 

  38. Dufaud, V. & Basset, J.-M. Catalytic hydrogenolysis at low temperature and pressure of polyethylene and polypropylene to diesels or lower alkanes by a zirconium hydride supported on silica-alumina: a step toward polyolefin degradation by the microscopic reverse of Ziegler–Natta polymerization. Angew. Chem. Int. Ed. 37, 806–810 (1998).

    Article  CAS  Google Scholar 

  39. Kots, P. A., Vance, B. C., Quinn, C. M., Wang, C. & Vlachos, D. G. A two-stage strategy for upcycling chlorine-contaminated plastic waste. Nat. Sustain. 6, 1258–1267 (2023).

    Article  Google Scholar 

  40. https://www.liquisearch.com/heat_of_combustion/heat_of_combustion_tables

Download references

Acknowledgements

This work received financial support by National Key R&D Program of China (2022YFE0114900 and 2021YFA1501102), National Natural Science Foundation of China (22232001, 21932002, 22072002 and 22378094), China National Petroleum Corporation-Peking University Strategic Cooperation Project of Fundamental Research, and New Cornerstone Science Foundation. We also acknowledge R. Mi, M. Zhang, T. Wang, Z. Guo, Y. Jiao, R. Cao and S. Tian for help with experimental setup and analysis. D.M. acknowledges support from the Tencent Foundation through the XPLORER PRIZE.

Author information

Authors and Affiliations

Authors

Contributions

D.M. conceived the project. Y.G., M.W., S. Yuan, J.Y. and S. Yu performed most of the reactions. J.D. and J.Y. did the LCA and TEA analysis. M.W., Y.G., B.X. and D.M. wrote the paper. All authors contributed to the discussion and revision of the paper.

Corresponding author

Correspondence to Ding Ma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Engineering thanks Huiyan Zhang, Massimiliano Delferro and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary discussion, Figs. 1–27 and Tables 1–14.

Source data

Source Data Fig. 2

Source data for Fig. 2.

Source Data Fig. 3

Source data for Fig. 3.

Source Data Fig. 4

Source data for Fig. 4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Gao, Y., Yuan, S. et al. Complete hydrogenolysis of mixed plastic wastes. Nat Chem Eng (2024). https://doi.org/10.1038/s44286-024-00064-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44286-024-00064-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing